
Is the Neutrino its own Antiparticle ?

Allen Caldwell

Max-Planck-Institut für Physik

Sulamith Goldhaber                      Memorial Lecture

School of Physics

Tel Aviv University



History

1930 Pauli predicts neutrino

Expectation for 2-body decay
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Write reaction



History

Allen Caldwell, MPI München              Sulamith Golhaber Lecture            Tel Aviv, 8 January 2006

1934 Fermi theory of Beta Decay

1956     Lee & Yang propose

Parity non-conservation in

Weak Decays

1957     Parity non-conservation

observed

1950’s  V-A theory of weak

decays established

1958     Reines & Cowan observe electron

(anti) neutrino

1962     Schwartz, Lederman Steinberger

observe muon neutrino

1973     Observation of weak neutral

currents

1983     Observation of W boson

1990’s  LEP only 3 light neutrinos

2000     Tau neutrino observed at FNAL



Standard Model
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m  =0



Non-SM History
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1960’s Davis discovers solar deficit

1990’s Gallex, Kamiokande, SAGE

confirms solar deficit, Super-K observes

atmospheric neutrino oscillations

2002  SNO shows solar oscillations to

active flavors, Kamland confirms solar

oscillations, K2K confirms atmospheric

oscillations



Neutrino Oscillations
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Mass eigenstates: 1, 2, 3    Weak eigenstates: e, μ, 

Production Oscillation Detection

Prob (oscillation) sin2 2 sin2
m2L

4E

 

 
 

 

 
 2 flavors

Oscillation experiment tell us about

mixing and mass differences



What we know
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Mixing Matrix

Uij can be characterized by three mixing angles, 12, 23, 13,

                                              one Dirac CP phase, ,

                                     and two Majorana phases 2, 3

12, 23 measured,  upper limit on 13

NORMAL INVERTED

m12
2 known

| m13
2 | known

Mass Scale



Current (lack of) Understanding
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1. absolute mass scale            (offset)

2. mass hierarchy                     (1,2,3 or 3,1,2)

3. nature of neutrino                 (Majorana, Dirac particle)

4. value of third mixing angle  ( 13)

5. CP phases                   ( , 2, 3 )

Double beta decay experiment can address 3, and, if neutrinos are

Majorana particles, then also a combination of 1,2,5

What we do not know about neutrinos:



Neutrinos everywhere
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There are a lot of neutrinos, but

presumably they do not make up a

large part of the Dark Matter

When a supernova happens - 99% of

the energy is carried away by neutrinos



Reasons to Care
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If neutrinos are their own anti-particles (Majorana), then Lepton Number

is not a good Quantum Number

 Baryon number may not conserved (conservation of B-L no longer

valid)

i.e., could have an explanation for the observed matter-antimatter

asymmetry in the universe  (Leptogenesis)

Most fundamental reason to care:  neutrinos have been full of surprises.

Neutrino experiments are difficult, but the payoff of a successful

experiment could be very high !

When Dirac postulated anti-matter, people thought it a crazy idea. Today,

we wonder where all the antimatter went …



Majorana vs Dirac Nature
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Usual matter particles have electric charge (electron, quarks, …), and

cannot be their own antiparticles.  What about neutrinos ?

Review: how do we distinguish a neutrino from an anti-neutrino ?

μ-   μ

detector

  

μ+

μ+  +
μ

detector

  

μ

Neutral particle from + decay produces μ- 

Neutral particle from - decay produces μ+ 



Majorana vs Dirac
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Usual explanation:

1. The neutral particles in the two cases are distinct

2. There is a conserved quantum number (Lepton Number) with the

following assignments

μ,μ +1

 μ,μ
+ 1

But

The existence of Lepton Number is not necessary. The neutral

particle produced in + decay is left-handed (V-A), and left-handed μ

only produce μ-, then we could just have the left-handed and right-

handed states of the same particle.

The existing data is neutral on the question of Majorana vs Dirac

nature.



Majorana vs Dirac
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Dirac: four states of the same mass

( L
D ,  R

D) (  L
D , R

D)

CPT CPT

Lorentz Boost, or (B,E) 

Majorana: two states of the same mass

( L , R )

CPT, Lorentz Boost, or (B,E) 

From B. Kayser



Majorana vs Dirac
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How can we test if neutrinos are Dirac or Majorana particles ?

Experimental Problem:

P( L R )
m

E

 

 
 

 

 
 

2

Only known technique is neutrinoless double beta decay:

A,Z+2A,Z

W- W-

e e

Nuclear Physics

m  eV, E MeV or more 



Double Beta Decay

Very rare decay

lifetimes >1020

years !
(A,Z)  (A,Z+1)+e+  energetically forbidden

(A,Z)  (A,Z+2)+2e+2  is allowed.

Then, for Majorana particle  (A,Z) (A,Z+2)+2e possible
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Decay Rate & Spectrum

0 -DBD 
rate

 Phase 
space

 Q5

Effective
Majorana mass

Nuclear matrix
element

Normalized energy

spectrum

If resolution poor

If resolution good

2

0
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1/   = G(Q,Z) |Mnucl|
2  <mee>

2



Decay Rate 

1/   = G(Q,Z) |Mnucl|
2  <mee>

2

Some numbers:

G(Q,Z) ~10-25 (yr ev2)-1                     Mnucl~2-3

So ~1 1025 yrs for <mee>=100 meV

i.e., <1 % atoms decay per mole of material per year !!!  Or, the

chance for an atom to have decayed via neutrinoless double beta

decay since the Big-Bang is 10-16.  This is a RARE decay.

Conclusion:  need 1000’s of mole-years of exposure for sensitivity at

100 meV level.  I.e., many kg of material watched over many years.

And, the backgrounds must be extremely low !!!
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Effective Neutrino Mass
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mee =|mee
(1) |+ei 2 |mee

(2) |+ei 3 |mee
(3) |

|mee
(1) |=|Ue1 |

2 m1

|mee
(2) |=|Ue2 |

2 m1 + m21
2

|mee
(3) |=|Ue3 |

2 m1 + m31
2

Re

Im

|mee
(1) |

|mee
(2) | ei 2

|mee
(3) | ei 3

mee

Complicated relationship between effective mass in neutrinoless double

beta decay and neutrino masses, mixing angles and phases

Cancellation possible: mee could be vanishingly small ( |
o    o



Effective Neutrino Mass

F.Feruglio, 

A. Strumia, 

F. Vissani, 

NPB 637

Inverted hierarchy

Normal hierarchy

D
egenera

te

Lightest neutrino (m1,m3) in eV
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e
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 e

V

90% CL

Negligible 

errors from 

oscillations;

width due to

CP phases 

 best value

H.V. Klapdor-Kleingrothaus, I.V.

Krivosheina, A. Dietz, O. Chkvorets

Phys.Lett.B586:198-212,2004
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History of Searches for 0  DBD
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There is a long history to

the search for neutrinoless

double beta decay,

including claims of positive

results.

Fireman, 1948

Klapdor-Kleingrothaus et al.



0  DBD Claims
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Note: 0  predicted to have shorter lifetime from phase space arguments

Positive result corresponds to                                  (my estimate)mee 30 keV



Heidelberg-Moscow Experiment

H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, A.

Dietz, O. Chkvorets

Phys.Lett.B586:198-212,2004

• Experiment with Ge detectors enriched in 76Ge

• Exposure 71.7 kg-yr

• Experiment carried out in Gran Sasso lab

• Background: 0.11/(keV kg yr)

Known Bi lines

Claim: 4.2  signal

T1/2=0.69-4.18 1025 yr

mee=440 meV (best fit)
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Proposed & Ongoing Experiments

48Ca  48Ti       4271             0.2%                           CANDLES

 76Ge 76Se          2039             7.4%                            GERDA,Majorana

  82Se  82Kr         2995             8.4%     NEMO

  96Zr  96Mo        3350             2.8%
100Mo 100Ru       3034            9.6%                            NEMO,MOON

116Cd 116Sn        2802            7.5%
128Te 128Xe         867              32%
130Te 130Xe        2529             34%                            COBRA,CUORE

136Xe 136Ba        2479              8.9%                          EXO,XMASS

150Nd 150Sm       3367             5.6%

Some of the possible isotopes

Q(keV)Decay Nat. Abundance Experiments
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GERDA

GERDA
1400 m 

~ 3.800 m.w.e

GERDA (GERmanium Detector Array) is a collaboration of 12 institutes,

ca. 80 physicists, from Germany, Italy, Russia, Poland, Belgium.

The experiment has been approved by the LNGS (Gran Sasso)
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GERDA

We like Germanium because:

• excellent energy resolution (3 keV @

2 MeV)

• considerable experience built up over

the years - best background levels !

• still improvements possible

2

0

There are also some downsides:

• Q=2039 keV in region of  backgrounds

• Q=2039 keV not among the higher Q values (recall 1/Q5)

• enrichment possible, but expensive ! 
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GERDA

Goal:

Reduce external

backgrounds to

10-3/(keV kg yr)

with LN, factor

10 less with LAr

Germanium

detectors
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Detector Setup
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Maximum charge
Organized

in strings

Start with existing detectors



Existing Detectors

Heidelberg-Moscow detectors for Phase I of GERDA
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In addition, three

detectors from

IGEX experiment.

Total mass approx

18 kg



New Detectors

18-fold segmented detectors (true-coaxial, 3x6, n-type)

Kapton

cable

bonded

contacts

Total of 30g mounting material / detector

Phase II detectors
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Phase II Detectors

Steps:

1. Enrich in 76Ge (>86%)  (This step completed)

• Suppression of internal backgrounds

• Cost

• Signal/background

2. Chemically purify the enriched material (need 99.9999% pure Ge)

3. Zone refining (purity 99.999999999 % Ge)

4. Crystal pulling (purity 99.9999999999 % Ge) some of the purest

material in the world - impurities at the level of 10-12/atom

5. Detector manufacture

6. In parallel - development of support and cabling system
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Khan river - Zhelenogorsk



ECP plant (official photo)



Centrifuge hall



Sample Storage





Backgrounds

The types of things we worry about:

e.g., cosmogenic activation of 68Ge (about 6/(day kg) in enriched Ge)
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.68Ge  68Ga via EC (10.6 KeV X-ray)

=271 days

68Ga  68Zn via + (90%, 1.9 MeV)

                 +  (0.511 MeV)

                 +  (0.511 MeV)

=68 minutes

MeV
Allen Caldwell, MPI München              Sulamith Golhaber Lecture            Tel Aviv, 8 January 2006



Practice run - 20 day trip

from Siberia in special

transport container

Success !



Active Background Suppression

Background (60Co):

Background sources:

 Cosmogenically produced 68Ge

and 60Co

 U/Th contamination, 210Pb on

surface

External gammas

Signatures:

Signal has two electrons in final

state  range ~mm

Background sources mostly  with

E >2 MeV

Compton scattering dominant

interaction, range ~few cm
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 Signal: 
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Background Suppression

Energy (keV)

Heidelberg-Moscow
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GERDA Sensitivity

Phase I: ca. 20 kg in 8 detectors, background level 10-2/(kg yr keV)

Phase II: addition 20 kg in 10 detectors, background level 10-3/(kg yr keV)

Sensitivity analysis:
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Summary

Inverted hierarchy

Normal hierarchy

D
egenera

te

Lightest neutrino (m1,m3) in eV

m
e
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V

1. We will confirm or rule out the Klapdor-Kleingrothaus et al. claim

2. If not verified and background reduction to the level 10-3/(kg yr keV)

demonstrated, go for Phase III (ca. 1 ton, 20 meV level)

3. We want to get started with data taking within 2 years - stay tuned !
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Claim

GERDA III

GERDA I,II


