



### AWAKE - a Proton Driven Plasma Wakefield Acceleration Experiment at CERN

Allen Caldwell Max-Planck-Institut für Physik

- 1. Brief Introduction
- 2. The AWAKE project
  - Collaboration
  - Program Run I
  - First beam!
  - Planning for Run II
- 3. Brief comment on particle physics applications



### **Proton Drivers for PWFA**

Proton bunches as drivers of plasma wakefields are interesting because of the very large energy content of the proton bunches.

#### **Drivers:**

PW lasers today, ~40 J/Pulse

FACET, 30J/bunch

SPS 20kJ/bunch LHC 300 kJ/bunch

#### Witness:

10<sup>10</sup> particles @ 1 TeV ≈ few kJ



Energy content of driver allows to consider single stage acceleration

### Self-modulation Instability

$$E_{z,\text{max}} \approx 2 \text{ GeV/m} \cdot \left(\frac{N_b}{10^{10}}\right) \cdot \left(\frac{100 \text{ } \mu\text{m}}{\sigma_z}\right)^2$$

Need very short proton bunches for strong gradients. Today's proton beams have  $\sigma_z \approx 10-30~\mathrm{cm}$ 

Microbunches are generated by a transverse modulation of the bunch density (transverse two-stream instability). The microbunches are naturally spaced at the plasma wavelength, and act constructively to generate a strong plasma wake. Investigated both numerically and analytically.



# Seeded self-modulation instability of a long proton bunch in plasma



SPC. CERN

December 13, 2016

### **AWAKE**

- AWAKE: Advanced Proton Driven Plasma Wakefield Acceleration Experiment
  - Use SPS proton beam as drive beam (Single bunch 3e11 protons at 400 GeV)
  - Inject electron beam as witness beam
- Proof-of-Principle Accelerator R&D experiment at CERN
  - First proton driven plasma wakefield experiment worldwide
  - First beam in 2016 (just happened!)

December 13, 2016

AWAKE Collaboration: 16 Institutes world-wide: John Adams Institute for Accelerator Science,

SPC, CERN



Budker Institute of Nuclear Physics & Novosibirsk State University

CERN

**Cockroft Institute** 

**DESY** 

Heinrich Heine University, Düsseldorf

Instituto Superior Tecnico

Imperial College

Ludwig Maximilian University

Max Planck Institute for Physics

Max Planck Institute for Plasma Physics

Rutherford Appleton Laboratory

**TRIUMF** 

**University College London** 

Univesity of Oslo

University of Strathclyde

### **AWAKE at CERN**



AWAKE is installed in

**CNGS Facility** (CERN Neutrinos to Gran Sasso)

→ CNGS physics program finished in 2012

A. Caldwell et al., "Path to AWAKE: Evolution of the concept", Nucl. Instrum. Meth. A829 (2016) 3-16; E. Gschwendtner et al. [AWAKE Collaboration], "AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN," Nucl. Instrum. Meth. A829, 76 (2016).

LINAC 3

2005 (78 m)



### **AWAKE: Experimental Program**

Phase 1: Understand the physics of self-modulation instability.



### **AWAKE Experimental Program**

- Phase 1: Understand the physics of self-modulation instability.
- Phase 2: Probe the accelerating wakefields with externally injected electrons.





Demonstrate GeV scale gradients with proton driven wakefields.

Maximum amplitude of the accelerating field  $E_z$  as a function of position along the plasma. Saturation of the SMI at ~4m.

### **AWAKE Overview**



December 13, 2016

SPC, CER

750m proton beam line

### **AWAKE Overview**



### **AWAKE: Plasma Source**

- Density adjustable from 10<sup>14</sup> 10<sup>15</sup> cm<sup>-3</sup>
- 10 m long, 4 cm diameter
- Plasma formed by field ionization of Rb
  - Ionization potential  $\Phi_{\mathsf{Rb}}$  = 4.177eV
  - above intensity threshold ( $I_{ioniz} = 1.7 \times 10^{12} \text{W/cm}^2$ ) 100% is ionized.
- Plasma density = vapor density
- System is oil-heated: 150° to 200° C
  - → keep temperature uniformity
  - → Keep density uniformity





**Grant Instruments** 

December 13, 2016 SPC, CERN

### Diagnostics

#### Rubidium vapor density measurement



$$S(\lambda) = A \cos \left( \frac{2\pi}{\lambda} \left[ \frac{n_{Rb} l r_0 f_1 \lambda_1^3}{4\pi (\lambda - \lambda_1)} + \frac{n_{Rb} l r_0 f_2 \lambda_2^3}{4\pi (\lambda - \lambda_2)} \pm \xi \right] \right)$$



After subtracting reference & normalizing – fit with functional form to get Rb density.



### Diagnostics



Indirect SMI diagnostic:

Compare transverse size of beam with and without plasma. Growth of tails governed by the transverse fields in the plasma.



### Commissioning

Proton beam commissioning run June 2016



### Commissioning

Proton & laser beam commissioning run September 2016



### Commissioning

Proton & laser beam commissioning run September 2016





### First Run December 9-12, 2016

### 3 10<sup>11</sup> Protons seen in optical transition radiation using streak camera



### Success!



Clearly see the transverse blow-up of the proton beam. Only possible with very strong electric fields !  $_{\text{SPC, CERN}}$ 



Success!

## Optical Transition Radiation Diagnostic



### Success!





### Schedule



AWAKE Planning for Run I – until LS2 of the LHC.

After LS2 – proposing Run II of AWAKE (during Run 3 of LHC)

After Run II – particle physics driven applications



#### Goals:

- stable acceleration of bunch of electrons with high gradients over long distances
- 'good' electron bunch emittance at plasma exit



#### Require:

- Compressed proton beam in SPS
- Short electron bunch with higher energy for loading wakefield
- Density step in plasma for freezing modulation
- Alternative plasma cell developments

#### Preliminary Run 2 electron beam parameters

| •                        | •                     |
|--------------------------|-----------------------|
| Parameter                | Value                 |
| Acc. gradient            | >0.5 GV/m             |
| Energy gain              | 10 GeV                |
| Injection energy         | $\gtrsim 50~{ m MeV}$ |
| Bunch length, rms        | 40–60 μm (120–180 fs) |
| Peak current             | 200–400 A             |
| Bunch charge             | 67–200 pC             |
| Final energy spread, rms | few %                 |
| Final emittance          | ≲ 10 µm               |
|                          |                       |

December 13, 2016

#### **Proton beam:**

Three important upgrades for the High Luminosity-LHC project that are also relevant for AWAKE:

- 200 MHz and 800 MHz RF upgrade in the SPS (800 MHz is done already)
- Impedance reduction in the SPS
- Increase of the injection kinetic energies in PS Booster (from 50 MeV to 160 MeV) and PS (from 1.4 GeV to 2 GeV)
  - ➤ Good for space charge limitation => smaller transverse emittance



#### **Electron Injectors:**

- **S-band gun**: cannot provide parameters in available space (bunch length, peak current)
- **X-band gun**: interesting technology, 50 MeV electrons in few meter. Expensive to "redevelop" a new gun.
- LWFA:



- **Ionization injection**: preliminary studies – fields need to be strong; still in linear regime?

#### **Scalable Plasma sources:**

- CERN-MPP-SPC helicon initiative
- Discharge source technology, 10 m cell, is being further developed at UCL.







### Helicon cell



1m prototype in regular operation (B. Buttenschön, O. Grülke, IPP Greifswald)



**Target density achieved** Uniformity under study.

New effort CERN - IPP - SPC @CERN under consideration

#### **Simulation studies:**

- Staging: issue length of gap allowed between plasma cells, length of cells
- Beam loading: study loading as function charge versus bunch length (on-going)
- Emittance preservation: optimal location for injection, parameters of electron bunch
- Tolerances: input to plasma source development
- **Density step:** optimal location, parameters



Intense simulation campaign will be launched

### Freezing the Modulation



... wakefield amplitude quickly drops after the beam gets modulated.

Reason: defocusing regions keep on moving along the beam and destroys the bunches.

Remedy: control of the wave phase by the plasma density profile. Very promising:





Run II simulations 'Mind the gap'

### Particle Physics Perspectives

#### Started considering:

- Physics with a high energy electron beam
  - E.g., search for dark photons
- Physics with an electron-proton or electron-ion collider
  - Low luminosity version of LHeC
  - Very high energy electron-proton, electron-ion collider

Are there fundamental particle physics topics for high energy but low luminosity colliders?

I believe – yes! Particle physicists will be interested in going to much higher energies, even if the luminosity is low.

In general – start investigating the particle physics potential of an AWAKE-like acceleration scheme.

### Summary

Proton-driven plasma wakefield acceleration interesting because of large energy content of driver.

Modulation process means existing proton machines can be used.

Goal for AWAKE run I: demonstrate modulation process and proton-driven acceleration of electrons before LS2 of the LHC. First data show the modulation – now need to study in detail!

Run II proposal developing: goals are demonstration of stable acceleration and good electron bunch properties.

Long term prospects for proton-driven PWA exciting! Starting to develop particle physics program that could be pursued with an AWAKE-like beam.

### Extra

### Dark Photon Search

Dark matter – what is it? So far, no experimental hints on particle nature.

Interest in low-mass particle solutions increasing; e.g., dark photons.

Light shining through walls experiments ...

Here, use electron beam.





NA64 – expect 10<sup>6</sup> electrons/spill; 10<sup>12</sup> electrons for 3 months

AWAKE electron beam driven by SPS proton bunch. Assuming 10<sup>9</sup> electrons/bunch, would give 3 orders of magnitude increase.

M. Wing, Physics Beyond Colliders Kickoff Workshop, 7/Sep/2016, CERN

SPC, CERN

### LHeC-like

#### Focus on QCD:

- Large cross sections low luminosity (HERA level) enough
- Many open physics questions!
- Consider high energy ep collider with Ee up to O(50 GeV), colliding with LHC proton; e.g. Ee = 10 GeV, Ep = 7 TeV, √s = 530 GeV already exceeds HERA cm energy.





G. Xia et al., Nucl. Instrum. Meth. A 740 (2014) 173.

Create ~50 GeV beam within 50–100 m of plasma driven by SPS protons and have an LHeC-type experiment.

Clear difference is that luminosity currently expected to be  $< 10^{30}$  cm<sup>-2</sup> s<sup>-1</sup>.

### **VHEeP**

(Very High Energy electron-Proton collider)



One proton beam used for electron acceleration to then collide with other proton beam

Luminosity  $\sim 10^{28} - 10^{29}$  cm<sup>-2</sup> s<sup>-1</sup> gives  $\sim 1$  pb-1 per year.

Choose  $E_e = 3$  TeV as a baseline for a new collider with  $E_p = 7$  TeV yields  $\sqrt{s} = 9$  TeV. Can vary.

- Centre-of-mass energy ~30 higher than HERA.
- Reach in (high) Q<sup>2</sup> and (low) Bjorken x extended by ~1000 compared to HERA.
- Opens new physics perspectives

VHEeP: A. Caldwell and M. Wing, Eur. Phys. J. C 76 (2016) 463

Electron energy from wakefield acceleration by LHC bunch



A. Caldwell, K. V. Lotov, Phys. Plasmas **18**, 13101 (2011)

### Physics Reach

Total photoproduction cross section – energy dependence? Fundamental physics question, impact on cosmic ray physics





Virtual photon cross section – observation of saturation of parton densities? Would provide information on the fundamental structure of the QCD vacuum.

+ BSM physics such as Leptoquarks, quark substructure, etc.

C, CERN