applicationContext = Production

LEGEND: die Natur des Neutrinos

Are neutrinos indeed their own antiparticles? The future LEGEND experiment will enable scientists to learn more about the properties of neutrinos. LEGEND was formed as a follow-up to the previous GERDA ((link)) and Majorana ((link)) experiments.

The current state of knowledge suggests that for every charged spin-½ particle there exists an antiparticle with an opposite electric charge: anti-quarks and anti-leptons (positron, anti-muon, and anti-tau). As the corresponding neutrinos are electrically neutral, they may differ from this scheme and be their own antiparticle. If this could be experimentally validated, it would open up new ways to improve our understanding of the physics of the universe.

How, then, can scientists discover if neutrinos are their own antiparticles?

They can search for a very special type of decay that only occurs if this is the case:

neutrinoless double beta decay ((link to graphic)), in which two neutrons are converted into two protons and two electrons. In standard double beta decay, two neutrinos are also released. In neutrinoless decay, however, these are exchanged within the nucleus. But this can only occur if

•    neutrinos and their antineutrinos are identical, and
•    they have the same mass.

[Translate to English:] Die Rolle von Germanium-76

To detect neutrinoless double beta decay, the LEGEND experiment will use detectors made of germanium-76, an unusual element that is, at least theoretically, capable of producing this decay. If the experiment can detect such decays, the presumed “dual nature” of the neutrino will be confirmed. Such detection relies on the fact that germanium-76 is not only the source of the decay, but also the material used to detect it.

In the first phase, the participating research groups will conduct the LEGEND 200 experiment at the LNGS using 200 kilograms of detector material. The experiment is scheduled to begin collecting data in 2022. In the second phase, an experiment employing 1000 kilograms of germanium detector material will be constructed. Both the location and time-line of the experiment are still under discussion.

[Translate to English:] Abschirmung gegen störende Strahlung

Even if neutrinoless double beta decay does exist, it is an extremely rare phenomenon. It could never be detected in the presence of normal natural radiation, as this produces background events similar to signal events.

For this reason, experiments searching for neutrinoless double beta decay need to be extremely well shielded from environmental radiation. However, background events also occur due to the radioactivity of the materials used in the experiment itself and due to cosmic rays, which can penetrate solid objects.

To minimize the influence of cosmic rays, scientists conduct the experiments very deep underground. LEGEND 200 will therefore be assembled at the Gran Sasso underground laboratory in Italy, shielded by 1.4 kilometers of mountain rock against cosmic rays from space.

LEGEND 200 will largely use the infrastructure of the successful GERDA experiment, which achieved the lowest ever background radiation rate. The germanium detectors are located in a tank filled with liquid argon made of specialized steel that emits very low levels of radiation. This container, in turn, is embedded in a ten-meter diameter tank filled with high-purity water, providing additional shielding. In addition, the experiment will also detect muons with specialized detectors to rule out signals that might be caused by these particles.

Forschung für LEGEND

An LEGEND sind mehr als 30 Forschungseinrichtungen aus fast zehn Ländern beteiligt. Die Gruppe am Max-Planck-Institut für Physik beschäftigt sich mit der Optimierung der Germanium-Detektoren (GeDET). Weitere Projekte sind die Untersuchung von Neutronen als Störquelle (MINIDEX), sowie die Entwicklung und Implementierung neuartiger optisch aktiver Bauelemente aus Kunststoff, die bereits bei LEGEND 200 eingebaut werden (PEN).

GeDet befasst sich mit der technischen Weiterentwicklung und Verbesserung von Germaniumdetektoren (GeDet). Ziel dabei ist es, Untergrundereignisse künftig besser zu erkennen. (Foto: I. Abt/MPP)

 

Neutronen sind eine Quelle für schwer erkennbare Untergrundereignisse. Das Projekt MINIDEX wird die Erzeugung von Neutronen aus der Wechselwirkung kosmischer Myonen untersuchen. (Foto: I. Abt/MPP)

Das Ziel des PEN-Projekts ist es, ein Meldesystem (Veto) für radioaktive Untergrundstrahlung zu entwickeln. Zugleich soll das dafür verwendete Material die Germaniumdetektoren schützen und umhüllen. (Foto: F. Fischer/MPP)

Weitere Informationen zur LEGEND-Gruppe

Aktuelle Meldungen

12/18/2020

The search for neutrinoless double-beta decay continues with new LEGEND experiment

Final results and completion of the GERDA experiment

The last measurements of the GERDA experiment were analyzed and published in 2020. The phote shows the experiment's opening in 2010. (Photo: MPP)

The GERDA experiment designed to prove the existence of neutrinoless double beta decay is coming to an end. The research collaboration has now evaluated the full data set produced by the experiment and published it in Physical Review Letters. Even though no signal was found, all goals set for the…

Read more

Gruppenmitglieder

name function extension office www

Abt, Iris, Dr.

Scientist 295 117

Caldwell, Allen, Prof. Dr.

Director 529 212

Fischer, Felix

PhD-Student 280 135

Gooch, Christopher

Engineering 242 115

Hagemann, Felix

PhD-Student 327 112

Hauertmann, Lukas

PhD-Student 764 112

Henkes, Florian

Student 373 028C

Hervas Aguilar, David

PhD-Student 764 112

Liu, Xiang, Ph.D.

Scientist 415 114

Majorovits, Béla, PD Dr.

Scientist 262 118

Manzanillas, Luis

Postdoc 280 135

Meinrad Ettengruber, Manuel

PhD-Student 561 203

Schulz, Oliver, Dr.

Scientist 521 113

Schuster, Martin

PhD-Student 327 112

Wacker, Ina

Secretary 207 213

Zsigmond, Anna Julia, Dr.

Postdoc 337 116

Schlüsselpublikationen

Alpha-event and surface characterisation in segmented true-coaxial HPGe detectors
Nucl. Instrum. Meth. A 858 (2017) 80-89

The GALATEA test-facility for high purity germanium detectors
Nucl.Instrum.Meth. A 782 (2015) 56

Measurement of the temperature dependence of pulse lengths in an n-type germanium detector
Eur. Phys. J. Appl. Phys. 56 (2011) 10104

Pulse shape simulation for segmented true-coaxial HPGe detectors
Eur. Phys. J. C 68, 609-618 (2010)

Neutron Interactions as Seen by A Segmented Germanium Detector
Eur. Phys. J. A 36, 139-149 (2008)

Characterization of the first true coaxial 18-fold segmented n-type prototype detector for the GERDA project Nucl.Instrum.Meth. A 577 (2007) 574