applicationContext = Production

Gravitational theory

Tracking down the force of gravity

17 particles that explain the world: The Standard Model of Physics describes the structure of matter and the fundamental forces interacting between matter particles. The forces are mediated by force carriers (gauge bosons): photons transfer the electromagnetic interaction, gluons the strong, and W and Z bosons the weak interaction. No carrier boson has yet been demonstrated for the fourth fundamental interaction, gravitation. Physicists have coined the term "graviton" for this as yet undemonstrated particle.

In his general theory of relativity, Albert Einstein defined gravitation as a geometrical property of spacetime, curved by mass or energy. His theory describes the graviton as a massless, spin-2 particle – in contrast to the already known, spin-1 gauge bosons.

Massive spin-2 particles

The members of the group "Gravitational theories: Massive spin-2 fields" Group study extended theories of gravity. They focus on spin-2 particles which, in contrast to Einstein's theory, possess mass. A massive spin-2 particle would, in a sense, fill a gap.

This is because the standard model includes both massless and massive, low-spin theories. The particles involved have been demonstrated in experiments. Spin-1 examples include the massless photon or the massive W and Z bosons.

The scientists are working to construct the mathematical foundations for a gravitational theory using massive spin-2 particles. They also investigate how such a particle would influence existing particle physics models and cosmology.

More information on the group "Gravitational theory: massive spin-2 fields"

Group members

name function extension office www

Caravano, Angelo

PhD-Student 321 318

Errasti Diez, Veronica, Dr.

Postdoc 427 336

Gording, Brage

PhD-Student 405 334

Lueben, Marvin

PhD-Student 427 336

Lüst, Dieter, Prof. Dr.

Director 282 317

Markou, Chrysoula, Dr.

Postdoc 466 348

Mendez, Julio, Dr.

Postdoc 427 336

Sturm, Annette

Secretary 482 307

Key publications

Heavy spin-2 Dark Matter
Eugeny Babichev, Luca Marzola, Martti Raidal, Angnis Schmidt-May, Federico Urban, Hardi Veermäe, Mikael von Strauss
JCAP 1609 (2016) no.09, 016
DOI: 10.1088/1475-7516/2016/09/016/meta

Recent developments in bimetric theory
Angnis Schmidt-May (Zurich, ETH) , Mikael von Strauss (Paris, Inst. Astrophys.)
J.Phys. A49 (2016) no.18, 183001
DOI: 10.1088/1751-8113/49/18/183001

Bimetric gravity is cosmologically viable
Yashar Akrami, S.F. Hassan, Frank Könnig, Angnis Schmidt-Ma, Adam R. Solomon
DOI: 10.1016/j.physletb.2015.06.06