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Numerical Integration

Numerical integration is used for definite integrals.  Most

techniques apply to low dimensional integration - we look at these

today.  Integration in many-dimensional space typically relies on

Monte Carlo techniques (next semester).

We want to find a numerical approximation to

f (x) dxa
b

Newton-Cotes methods - use equidistant points:

xi = a + ih i = 0,...,n h =
b a

n

f(xi+1)

xi xi+1

h

f(xi)

a b
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Lagrange Polynomials

For n+1 points (xi,yi), with

there is a unique interpolating polynomial of degree n with

 
i = 0,1, ,n          xi x j i

 
p(xi ) = yi         i = 0,1, ,n

Can construct this polynomial using the Lagrange polynomials,

defined as:

 

Li (x) =
(x x0 ) (x xi 1)(x xi+1) (x xn )

(xi x0 ) (xi xi 1)(xi xi+1) (xi xn )

Degree n (denominator is constant), and

Li (xk ) = i,k
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Lagrange Polynomials

The Lagrange Polynomials can be used to form the interpolating

polynomial:

p(x) = yiLi (x)
i=0

n

= yi
i=0

n x xk
xi xkk=0,k i

n

In our application, yi = f (xi )

Integration of the polynomial yields:

p(x) dxa
b

= f (xi )
i= 0

n x xk
xi xkk= 0,k i

n
dxa

b
= f (xi )

i= 0

n s k

i kk= 0,k i

n
hds0

n

where x = a + sh

Note that
s k

i kk=0,k i

n
hds0

n
= ih

So i is just a number depending on i,n
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Newton-Cotes Formulas

So, p(x) dxa
b

= h f (xi )
i=0

n

i

Look at some specific examples:

n = 1 p(x) = f (x0)
x x1
x0 x1

+ f (x1)
x x0
x1 x0

0 =
s k

i kk=0,k i

1
ds0

1
=

s 1
0 1

ds0
1

=
12

2
+1=

1
2

1 =
s k

i kk=0,k i

1
ds0

1
=

s 0
1 0

ds0
1

=
12

2
=
1
2

p(x) dxa
b

= h f (xi )
i=0

n

i = hf (x0)
1
2

+ hf (x1)
1
2

=
h

2
( f (x0) + f (x1))

Trapezoidal rule
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Trapezoidal Rule

Graphically:

A=f(x0)h+1/2[f(x1)-f(x0)]h

Of course, we can apply this to many subdivisions (composite

trapezoidal rule) :

  

f (x) dxa
b

= f (z) dzz
i

z
i +1

i= 0

m
   where  z0 = a, zm+1 = b

f (x) dxa
b h

f (x0)
2

+
f (x1)

2
+
f (x1)

2
+
f (x2)

2
+ +

f (b h)
2

+
f (b)
2

 

 

 

 

f (x) dxa
b h

f (x0)
2

+ f (x1) + + f (b h) +
f (b)
2

 

 

 

 

f(x1)

x0 x1

h
f(x0)
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Error Order

To find the error order of a particular approximation, we consider a

series approximation.  For the numerical simulation of derivatives,

we compared to a Taylor series.  Here we compare to the Euler-

Maclaurin summation formula:

F(i)
i=1

n 1
= F(s) ds0

n 1
2
F(0) + F(n)[ ] +

B2k

(2k)!k=1
F (2k 1)(n) F (2k 1)(0)[ ]

where

F (k ) is the k - th derivative of F and the B2k  are the Bernoulli numbers
n Bn

0 1

1 /2 = .5

2 1/6  0.1667

4 /30  .0333

6 1/42  0.02381

8 /30  .0333

10 5/66  0.07576

12 91/2730  .2531

14 7/6  1.1667

Bn=0 for n 3, odd
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Error Order

Make the transformation: x = sh + a

f (xi )
i =1

n 1
=
1
h

f (x) dxa
b 1

2
f (a) + f (b)[ ] +

B2k

(2k)!k =1
f (2k 1)(b) f (2k 1)(a)[ ]h2k

or

f (x) dxa
b

= h f (xi )
i =1

n 1
+

h

2
f (a) + f (b)[ ]

h2

12
 f (b)  f (a)[ ] + O(h4 )

We see that the error from the trapezoidal rule is of order h2.

The precision can be improved by setting h smaller and smaller

but we will eventually hit rounding errors and computing time

limitations.  Look for methods with higher order of the error.

Trapezoidal Rule
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Simpson’s Rule

n = 2 p(x) dxa
b

= h f (xi )
i=0

n

i = 2h
f (x0) + 4 f (x1) + f (x2)

6

Composite Simpson’s rule:

  

f (x) dx
a

b 2h
6

f (a) + 4 f (a + h) + f (a + 2h) +

f (a + 2h) + 4 f (a + 3h) + f (a + 4h) +

+

f (b 2h) + 4 f (b h) + f (b)

 

 

 
 
 
 

 

 

 
 
 
 

               =
h

3
f (a) + 4 f (a + h) + 2 f (a + 2h) + 4 f (a + 3h) + + 4 f (b h) + f (b)[ ]

Note: range divided

into an even

multiple of h

f(x2)

x0 x2

2h
f(x0)

f(x1)

x1

Error order h4

(interpolating

polynomial of

2nd order)
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Midpoint Rule

It is sometimes preferable to sample the function at the midpoint

of the interval rather than at the ends (e.g., if the function has a

singularity at the endpoint).  Simplest example:

f (x) dxa
b hf

a + b

2
 

 

 

 
h = b a

a b

h

f((a+b)/2)

The composite midpoint rule gives:

  
f (x) dxa

b 2h f (a + h) + f (a + 3h) + + f (b h)( )

The error order is h2
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Extrapolation Method

Let Rij be our estimate of the integral when 2i-1 intervals are used

and j is the order of the interpolating polynomial (previously n).

E.g., j=1 is Trapezoidal Rule, j=2 is Simpson’s Rule.

Look at the error formula:

  

f (x) dxa
b

= TS (h) + 2h
2

+ 4h
4

+

where TS (h) is e.g. the Trapezoidal rule.  Now take    h
h

2

f (x) dxa
b

= TS (h /2) + 2h
2 /4 + 4h

4 /16 +

so

f (x) dxa
b 4TS (h /2) TS (h)

3
= 4h

4 /4 +

i.e., can get a higher order error by combining results from

different step sizes (recall extrapolation method for derivatives).
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Extrapolation Method

Ri+1, j+1 = Ri+1, j +
Ri+1, j Ri, j
4 j 1

See Scherer lecture notes

for derivation

So we can gain higher order of error at the same time as making

the step size smaller (technique called Romberg integration).

  

R1,1
R2,1 R2,2
R3,1 R3,2 R3,3

So, e.g., can get up h6

precision by extrapolating

the trapezoidal rule

calculations with spacing

h,h/2,h/4

There is a general formula for calculating the higher order terms -

Richardson Formula:
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Example

Let’s investigate a concrete example:

K = 1 k2 sin2 d0
/ 2

We know the exact value for some k, e.g., k=1 K=1.0

 0.785398126

  0.94805944    1.00227988

  0.987115741  1.00013447  0.999991417

Romberg Integration (3 step)

Trapezoidal rule used 3 times

i

1

2

3

j         1                   2                     3
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Example

Convergence much

slower because of infinite

slope at x=2

d 4 x2

dx
=
1
2

2x

4 x2
=

x

4 x2 x 2
    

K = 4 x2 dx0
2

=

Next example:
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Magnetic Field

Current I flowing in wire.

Biot-Savart Law:

  

d
 

B =
μ0I

4
d

 
z 

 
r 

r3

z

x

  
 

r 

  d
 

z +L-L
  d

 
z 

 
r = rdzsin ˆ y 

  

 

B = Bˆ y , B =
μ0I

4
rsin

r3 dz
L

L

=
μ0I

4
x

(x2
+ z2)

3
2

dz
L

L

Consider L , x small:  Ampere’s Law gives              where r  is

the distance from the wire.  Try our numerical calculations.

B =
μ0I

2 r
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Magnetic Field

Note that Ampere’s law applied to an infinite length wire. To

reproduce the result numerically, need to have L>>r.

r = x = 1,
x

x2
+ z23

 

 
 

 

 
 

min

=
1

12
+ L23

 

 
 

 

 
 ,

x

x2
+ z23

 

 
 

 

 
 

max

=
1

12
+ 03

 

 
 

 

 
 

x

x2
+ z23

 

 
 

 

 
 

min

x

x2
+ z23

 

 
 

 

 
 

max

=
1

12
+ L23

 

 
 

 

 
 

for this ratio , L >
2

3 1
1

3

For L = 1000, = 10 9
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Magnetic Field

Take x=1, L=1000
Step too big

Rounding errors
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Magnetic Field

Try double precision: L=10000
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Gaussian Quadrature

We now move away from the requirement of equidistant points

for the integration.  General technique called Gaussian

quadrature which yields polynomial accuracy of order (2n-1)

using nth order polynomials.

Consider the scalar product of two functions in the interval [-1,1]

fg = f (x)g(x) dx1
1

Now consider an orthogonal set of polynomials on this interval,

such that
PiPj = ij

E.g., Legendre polynomials (1,x,x2-1/3,…)
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Gaussian Quadrature

Assume we have a polynomial p(x) of order 2n-1.  We can

interpolate this polynomial at n points xi using our usual Lagrange

method of order n-1:
˜ p (x) = L j (x)p(x j )

j =1

n

We can rewrite p(x) as 

  

p(x) = ˜ p (x) + (x x1)(x x2) (x xn )q(x)

where q(x) is a polynomial of degree n -1

If we pick the xi as the roots of an nth  order polynomial

from an orthogonal set (e.g., Legendre Polynomials), then

Pn (x) = (x x1)(x x2) (x xn )

Pn (x)q(x) = 01
1      since q(x) = a j Pj (x)

j = 0

n 1
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Gaussian Quadrature

So, p(x) dx =1
1 ˜ p (x) dx =1

1 L j (x)p(x j )
j =1

n
dx1

1
= w j p(x j )

j =1

n

where the wj are determined by the choice of xj which in turn

come from the choice of orthogonal set of polynomials.

w j = L j dx1
1

Procedure (Legendre polynomials):

1. Choose which order you want to use (n)

2. Find the n roots of Pn (look them up in a table)

3. Find the corresponding Lagrange Polynomials

4. Calculate the weight factors

6.   Evaluate the integral

Note what we have achieved: 2n-1 accuracy using a polynomial of

degree n by picking sampling points in special way.
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Gaussian Quadrature

E.g., use Legendre polynomials, n=2

P2(x) = x2 1
3

   with roots  x1 = 1
3 x2 = 1

3

The Lagrange polynomials are

 

Li (x) =
(x x0 ) (x xi 1)(x xi+1) (x xn )

(xi x0 ) (xi xi 1)(xi xi+1) (xi xn )

L1 =
(x x2)
(x1 x2)

=
x + 1

3
1

3
1

3( )
=
x + 1

3
2 1

3

w1 = L1 dx = 11
1

L2 =
x 1

3
2 1

3

                                                 w2 = L2 dx = 11
1

Note that these can be used for any integrand you want to

evaluate
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Gaussian Quadrature

So, this gives the 2-point rule: f (x) dx1
1 f 1

3( ) + f 1
3( )

K = 1 sin2 d0
/ 2 /2

2
cos

/2
2

/2
2

1
3

 

 

 

 
+ cos

/2
2

+
/2
2

1
3

 

 

 

 

 

  
 

  

                                    =
4

0.9454092 + 0.3258856[ ] = 0.9984726

e.g.,

For different integration limits, make a change of variables:

x =
a + b

2
+
b a

2
u

f (x) dxa
b

= f
a + b

2
+
b a

2
u 

 

 

 1
1 b a

2
du

for our example

f (x) dxa
b b a

2
f
a + b

2
b a

2
1

3
 

 

 

 
+ f

a + b

2
+
b a

2
1

3
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Gaussian Quadrature

Of course, can apply composite Gaussian Quadrature, or use a

higher order Legendre polynomial.

0.568889

0.478629

0.236927

0

±0.538569

±0.906180

5

0.652145

0.347855

±0.339981

±0.861136
4

8/9

5/9

0

± 3/5
3

1± 1/32

201

wixin
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Gaussian Quadrature

One can also choose different sets of orthogonal polynomials by

breaking up the integral as follows w(x) f (x) dxa
b

Laguerree-x[0, )

Chebyshev (second kind)(1-x2)[-1,1]

Chebyshev (first kind)1/ (1-x2)(-1,1)

Jacobi(1-x) (1-x)  , >-1(-1,1)

Legendre1[-1,1]

Orthogonal Polynomialsw(x)Interval

The weights are given by wi = w(x)Li (x) dxa
b

Orthogonality: w(x)PN (x)PM (x) dxa
b

= 0 M N
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Field due to Current Loop

Example: the magnetic field due to a current loop:

z

  
 

r 
r )

. x,y,z

  

 

L 

Magnetic field can be calculated analytically for points along the

axis, but not for other points.  Magnetic field will have components

in all directions.  Need to calculate them one at a time.
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Field due to a Current Loop

Calculation of the magnetic field due to a current loop at a point P

off the axis of the loop.  Following integrals appear:

I =
x

(a x)
3

2 1 x2
dx1

1 take  a =
5
4

Note that               already appears in integral, so we use this as

the weight function and use the roots of the Chebyshev

polynomials of the first kind.  For n=4, these are

1

1 x2

x1 = cos 8, x2 = cos3 8, x3 = cos3 8, x4 = cos 8
giving

w1 = w2 = w3 = w4 = 4

so that I w1 f (x1) + w2 f (x2) + w3 f (x3) + w4 f (x4 ) = 5.02

where f (x) =
x

(a x)
3
2

Correct answer 5.33

Note singularity

at endpoints !
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Exercizes

1. Compare the Trapezoidal rule, Simpson’s rule, the Romberg

extrapolation method, and Gaussian quadrature with

Legendre Polynomials for the following integral (try different
values of m) for different step sizes:

8
d

cos cos m
0

m


