
Winter Semester 2006/7 Computational Physics I Lecture 11 1

Root Finding and Optimization

Root finding, solving equations, and optimization are very closely

related subjects, which occur often in practical applications.

Root finding : f (x) = 0 Solve for x

Equation Solving : f (x) = g(x), or f (x) g(x) = 0

Optimization :
dg(x)
dx

= 0 f (x) =
dg(x)
dx

Start with one equation in one variable. Different methods have

different strengths/weaknesses. However, all methods require a

good starting value and some bounds on the possible values of

the root(s).

Winter Semester 2006/7 Computational Physics I Lecture 11 2

Root Finding

Bisection

Need to find an interval where f(x) changes sign (implies a zero

crossing). If no such interval, no root. Then, divide interval into

a0,a0 +
b0 a0
2

, a0 +

b0 a0
2

,b0

Find interval where f(x) changes sign, and repeat until interval is

small enough.

Winter Semester 2006/7 Computational Physics I Lecture 11 3

Root Finding

We will try this method on one of our old examples - planetary

motion. Recall, for two masses m1,m2, we found:

1
r

=
μGMm

L2

1 ecos(+ 0)[] r =

a(1 e2)
1 ecos(+ 0)

Reduced mass : μ =
m1m2

m1 + m2

r =

r 1

r 2where

and

a =
rmin + rmax

2
=

L2

μGMm

1

1 e2

b =
L2

μGMm

1

1 e2

Winter Semester 2006/7 Computational Physics I Lecture 11 4

2-body motion

The position of the individual masses is given by

We first have to solve for (t), then for x,y. To solve for (t), need

to find the root of

for a given t.

Here, we are interested in plotting the orbit of individual masses

as a function of time - i.e., taking equal time steps. The

relationship between the angle and the time is:

t =
T

2
esin() where is the angle from the center of the ellipse

x1 =
m2

m1 + m2
a(cos e) x2 =

m1
m1 + m2

a(cos e)

y1 =
m2

m1 + m2
a 1 e2 sin y2 =

m1
m1 + m2

a 1 e2 sin

esin()
2 t

T
= 0

Winter Semester 2006/7 Computational Physics I Lecture 11 5

2-body motion

Need a starting interval for the bisection algorithm: We note that
the maximum and minimum of the sin() term is 1, -1. So we can

take as the starting range for
a =

2 t

T
e b =

2 t

T
+ e

esin()
2 t

T
= 0

f()

Winter Semester 2006/7 Computational Physics I Lecture 11 6

2-body motion

Let’s take some random values for the parameters:

T=1, a=1, e=0.6, m2=4m1

 accuracy=1.D-6

* Define range in which we search

 angle1=2*3.1415926*t-e

 angle2=angle1+2.*e

 try1=tfunc(e,period,t,angle1)

 try2=tfunc(e,period,t,angle2)

 If (try1*try2.gt.0) then

 print *,' Cannot find root - bad start parameters'

 return

 Endif

* Now update until within accuracy

 1 continue

 step=angle2-angle1

 angle2=angle1+step/2.

 try2=tfunc(e,period,t,angle2)

 If (try1*try2.lt.0.) goto 2 (root in this interval)

 If (try1.eq.0.) then

 angle=angle1

 return

 Elseif (try2.eq.0.) then (check for exact landing)

 angle=angle2

 return

 Endif

 angle1=angle2

 try1=try2

 angle2=angle2+step/2.

 try2=tfunc(e,period,t,angle2)

 If (try1*try2.lt.0.) goto 2

 If (try1.eq.0.) then

 angle=angle1

 return

 Elseif (try2.eq.0.) then

 angle=angle2

 return

 Endif

 2 continue

 If ((angle2-angle1).gt.accuracy) goto 1

 angle=angle1+(angle2-angle1)/2.

esin()
2 t

T
tfunc=

} Note: accuracy 2-(# iterations).

For 10-6, need 21 iterations

Winter Semester 2006/7 Computational Physics I Lecture 11 7

2-body motion

Winter Semester 2006/7 Computational Physics I Lecture 11 8

Regula Falsi

Similar to bisection, but use linear interpolation to speed up the

convergence. Start with the interval with function values

 such that . Use linear interpolation to

guess the zero crossing.

x0,a0[]
f (x0), f (a0) f (x0) f (a0) < 0

p(x) = f (x0) + (x x0)
f (a0) f (x0)
a0 x0

p(x) = 0 gives 1 =
a0 f (x0) x0 f (a0)
f (x0) f (a0)

Winter Semester 2006/7 Computational Physics I Lecture 11 9

Regula Falsi

Now calculate f (1)

If

else

f (x0) f (1) < 0 choose new interval [x0, 1]

f (x0) f (1) > 0 choose new interval [1,a0]

With our previous example (2-body motion), most of the time we

are faster at converging that the bisection method, but we find

that we sometimes need many iterations to reach the accuracy of

10-6.

p(x) = 0 gives 1 =
a0 f (x0) x0 f (a0)
f (x0) f (a0)

Problem occurs when either f(x0) or
f(a0) very close to zero, then 1 is very

close to x0 or a0 and convergence is

extremely slow (or not converging

because of machine rounding)

Iterate until

interval

sufficiently small

Winter Semester 2006/7 Computational Physics I Lecture 11 10

Regula Falsi

So we add the extra condition that the interval has to shrink by at

least the level of accuracy we are trying to reach. The logic is:

If a0 x0 < accuracy, Converged

If 1 x0 < accuracy /2, 1 = x0 + accuracy /2

If 1 a0 < accuracy /2, 1 = a0 accuracy /2

Then continue with the usual

f (x0) f (1) < 0 choose new interval [x0, 1].

f (x0) f (1) > 0 choose new interval [1,a0]

Bisection Modified

Regula Falsi

Winter Semester 2006/7 Computational Physics I Lecture 11 11

Newton-Raphson Method

Here we use the slope (or also 2nd derivative) at a guess position

to extrapolate to the zero crossing. This method is the most

powerful of the ones we consider today, since we can easily

generalize to many parameters and many equations. However, it

also has its drawbacks as we will see.

What if this is our guess ?

Winter Semester 2006/7 Computational Physics I Lecture 11 12

Newton-Raphson Method

The algorithm is:

* make a starting guess for the angle

angle=2.*3.1415926*t

try=tfunc(e,period,t,angle)

* Now update until angular change within accuracy

 Do Itry=1,40
 slope=tfuncp(e,period,t,angle)

 angle1=angle-try/slope

 try1=tfunc(e,period,t,angle1)

 If (abs(angle1-angle).lt.accuracy) goto 1

 angle=angle1

 try=try1

Enddo

1 continue

Analytic derivative needed for NR method

xi +1 = xi
f (x)

 f (x)
1st order

esin()
2 t

T
= tfunc(e, period,t,angle)

1 ecos() = tfuncp(e, period,t,angle)

Winter Semester 2006/7 Computational Physics I Lecture 11 13

Newton-Raphson Method

Modified

Regula Falsi Newton-Raphson

This is the fastest of the methods

we have tried so far.

Note: if no analytic derivatives

available, then calculate them

numerically: secant method

Winter Semester 2006/7 Computational Physics I Lecture 11 14

Several Roots

Suppose we have a function which as several roots; e.g. the

function we found a couple lectures ago when dealing with

eigenvalues (principal axis problem):

0 =
3

+ 8 2(a2 + b2) (16a4 + 39a2b2 +16b4) + 28a2b2(a2 + b2)[]

It is important to analyze the problem and set the bounds

correctly. For the NR method, if you are not sure where the root

is, then need to give several different starting values and see what

happens.

Winter Semester 2006/7 Computational Physics I Lecture 11 15

Several variable

The Newton-Raphson method is easily generalized to several

functions of several variables:

f (x) =

f1(x1, ,xn)

fn (x1, ,xn)

= 0

We form the derivative matrix:

Df =

f1
x1

f1
xn

fn
x1

fn
xn

If the matrix is not singular, we solve the SLE:

 0 = f (

x (1)) + Df (

x (0))(

x (1)

x (0))

The iteration is

x (r +1)

=

x (r) Df (

x (r))()
1

f (

x (r))

Winter Semester 2006/7 Computational Physics I Lecture 11 16

Optimization

We now move to the closely related problem of optimization

(finding the zeroes of a derivative). This is a very widespread

problem in physics (e.g., finding the minimum 2, the maximum

likelihood, the lowest energy state, …). Instead of looking for

zeroes of a function, we look for extrema.

Finding global extrema is a very important and very difficult

problem, particularly in the case of several variables. Many

techniques have been invented, and we look at a few here. The

most powerful techniques (using Monte Carlo methods) will be

reserved for next semester.

Here, look for the minimum of . For a maximum, consider

the minimum of - . We assume the function is at least twice

differentiable.
 h(

x)

 h(

x)

Winter Semester 2006/7 Computational Physics I Lecture 11 17

Optimization

First and second derivatives:

g t (

x) =

h

x1

, ,
h

xn

 a vector

H(

x) =

2h

x1 x1

2h

x1 xn

2h

xn x1

2h

xn xn

 the Hessian matrix

General technique:

1. Start with initial guess

x (0)

2. Determine a direction,

s , and a step size

3. Iterate

x until

g t < , or cannot find smaller h

x (r +1)
=

x (r)

+ r

s r

Winter Semester 2006/7 Computational Physics I Lecture 11 18

Steepest Descent

Reasonable try: steepest descent

s r =

g r step length from 0 =

h(

x r

g r)

Note that consecutive steps are in orthogonal directions.

As an example, we will come back to the data smoothing

example from Lecture 3:

2
=

(yi f (xi;))
2

wi
2

i=0

n

 are the parameters of the function to be fit

yi are the measured points at values xi
wi is the weight given to point i

In our example: f (x;A,) = Acos(x +)

and wi = 1 i

we want to minimize 2 as a function of A and

Winter Semester 2006/7 Computational Physics I Lecture 11 19

Steepest Descent

x y

0. 0.

1.26 0.95

2.51 0.59

3.77 -0.59

5.03 -0.95

6.28 0.

7.54 0.95

8.80 0.59

2
=

(yi f (xi;))
2

wi
2

i=0

n

h(A,) =
2

= (yi Acos(xi +))2
i=1

8

Winter Semester 2006/7 Computational Physics I Lecture 11 20

Steepest Descent

To use our method, need to have the derivatives:

g (A,) =

2(yi Acos(xi +))(cos
i =1

8
(xi +))

2(yi Acos(xi +))(Asin
i =1

8
(xi +))

recall step length from 0 =
dh(

x r

g r)

d r

=
d

d r

h(

x r +1)

d

d r

h(

x r +1) = h(

x r +1)T d

d r

x r +1 = h(

x r +1)T

g r

Setting to zero we see that the step length is chosen so as to

make the next step orthogonal. We proceed in a zig-zag pattern.

Winter Semester 2006/7 Computational Physics I Lecture 11 21

Steepest Descent

Determining the step

size through the

orthogonality is often

difficult. Easier to do it

by trial and error:

* Starting guesses for parameters

 A=0.5

 phase=1.

 step=1.

* Evaluate derivatives of function

 gA=dchisqdA(A,phase)

 gp=dchisqdp(A,phase)

*

 h=chisq(A,phase)

*

 Itry=0

 1 continue

 Itry=Itry+1

* update parameters for given step size

 A1=A-step*gA

 phase1=phase-step*gp

* reevaluate the chisquared

 h1=chisq(A1,phase1)

* change step size if chi squared increased

 If (h1.gt.h) then

 step=step/2.

 goto 1

 Endif

* Chi squared decreased, keep this update

 A=A1

 phase=phase1

 gA=dchisqdA(A,phase)

 gp=dchisqdp(A,phase)

Winter Semester 2006/7 Computational Physics I Lecture 11 22

Steepest Descent

* Starting guesses for parameters

 A=0.5

 phase=1.

 step=1.

Minimum found is A=-1, phase= /2.

Previously, A=1, phase=- /2

Winter Semester 2006/7 Computational Physics I Lecture 11 23

Other Techniques

• Conjugate Gradient

• Newton-Raphson

• Simulated annealing (Metropolis)

• Constrained optimization

You want to learn how to

make these nice pictures ?

Attend today’s recitation.

Special presentation from

Fred on GNU.

Discuss briefly next time

Winter Semester 2006/7 Computational Physics I Lecture 11 24

Exercizes

1. Write a code for the 2-body motion studied in the lecture, but

using numerically calculated derivatives (secant method).

Compare the speed of convergence to that found for the NR

method.

2. Code the 2 minimization problem. Find suitable starting

conditions so that the second minimum is reached. Display

graphically.

