Other Optimization Techniques

Conjugate Gradient

Similar to steepest descent, but slightly different way of choosing
direction of next step:

r r-r
So =—80
S,e1 =81t ﬁr+1§r
—
new term

A, is chosen to minimize h(X,,,). This yields g;,,8. =0

r
Here we allow a further step in the 5, direction. One choice

(Fletcher - Reeves) for 3, is

2
_ 8 r+1
ﬁ r+1 — 2
’
Winter Semester 2006/7 Computational Physics I Lecture 12 1

Newton-Raphson

Assume the function that we want to minimize is twice
differentiable. Then, a Taylor expansion gives

hZ+d)=a+b'o+ %aﬁc&

Q!

2
where a=h(®), Bb=Vhx) =3, c=£ Jh j:H
o0l ;

Now Vh(+a)=b+Cda Because C is symmetric (check)

For an extremum, we have b+Ca =0 a=-C'b

—

or Xril :Xr_H(xr)_lg(xr)

Winter Semester 2006/7 Computational Physics I Lecture 12 2

Newton-Raphson

5(5,,_,_1 = Xr o H(xr)_lg(xr)
i.e., the search directionis 5=H(%,) 'g(X,) and A=1

This converges quickly (if you start with a good guess), but the
penalty is that the Hessian needs to be calculated (usually

numerically)
Again, convergence is when s Is sufficiently small

How would we calculate the Hessian numerically ? Use Lagrange
polynomial in several dimensions and work it out

Winter Semester 2006/7 Computational Physics I Lecture 12 3

Bounded Regions

The standard tool for minimization in particle physics is the
MINUIT program (CERN library). It has also made its way well
outside the particle physics community.

Author: Fred James

Here is how MINUIT handles bounded search regions - it
transforms the parameter to be optimized as follows:

A—a b—a

b—a

A = arcsin(Z — l) A=a+ (sinA” +1)

A is the exernal (user) parameter

A’ is the internal parameter

MINUIT is available within PAW, ROOT ...

Winter Semester 2006/7 Computational Physics I Lecture 12 4

MINUIT

MINUIT uses a (variable metric) conjugate gradient search
algorithm (along with others). Basic idea:

e assume that the function to minimize can be approximated by a

guadratic form near the minimum
* build up iteratively an approximation for the inverse of the

Hessian matrix. Recall

_ 1
h(X+ @) =h(X)+Vh(X) a+ E(TH&

the approximation for the Hessian is updated as follows:

(3_5141 B 56}) ® (3_5141 _ 56}) . [Hi ' (Vhiﬂ N th)] ® [Hi ' (Vhiﬂ o th)]
Xy — %) (Vhi+1 - Vhi) (th - Vhi) H; - (th - Vhi)
where the ® symbol represents an outer product of two vectors (a matrix)

(@®b) =ab,
ij J
Winter Semester 2006/7 Computational Physics I Lecture 12 5

H., =H+

Fourier Transforms

Fourier transforms are very important

e as a way of summarizing the data with a few parameters

* because the transform of the data is itself very interesting (e.g.,
power spectrum, momentum«coordinate space
representation,...)

H(f)= [h(t) e*™ dt H(f) frequency domain representation
()= [H(f)e ™ dt h(t) time domain representation

Warning: there is no unanimity on 27 factors in front of the
Integral. Often the angular frequency is used ®=2xf

H(w) = Th(r) e'”dt h(t)= ;ﬂ TH(a)) e ' dw

Winter Semester 2006/7 Computational Physics I Lecture 12 6

Fourier Transform

Fourier Transform is a linear operation:

e transform of the sum of two functions is the sum of the
transforms

 the transform of a constant times a function is constant times the
transform

h(1) real H-/)=[H]

h(r) imaginary H(-f)=-[H(f)]
h(t) even H(-f)=H(f)

h(t) odd H(-f)=-H(f)

h(t) real,even H(f) real, even

h(t) real,odd H(f) imaginary, odd

h(t) imaginary,even H(f) imaginary, even
h(t) imaginary,odd H(f) real, odd

Winter Semester 2006/7 Computational Physics I Lecture 12 7

Fourier Transform

Further properties: /.y <, 1H(f)
a

1) G
h(t—ty)) & H(f)e™"
h(e™™" < H(f = f)

We are typically interested in the Fourier analysis of a discretely
sampled data set. Define the time step (taken to be constant
here) as A. The sampling rate (frequency) is 1/A. Define the
samples as

h, = h(nA) n=--,-3-2,-10123,--

Winter Semester 2006/7 Computational Physics I Lecture 12 8

Nyquist frequency

1 .
=__ Nvyquist frequenc
fe A yQ g y

This is the highest frequency which can be resolved with a
sampling frequency f=1/A. If a continuous function h(t) is limited
in frequency components to frequencies less than f_, then h(t) is

completely determined by its samples h,,. It can then be written
as follows:

2, sin[2af.(t— nA)]
wlD) = Anzz_m & (t — nA)

However, if there are frequency components which are higher
than f_, then they will be spuriously moved in the range f<f,
(aliasing).

Winter Semester 2006/7 Computational Physics I Lecture 12 9

Example

bata Fit Aliasing

o 1 o p 1
o o o
35 35 35
£ 08 [= £ 08
o = =3
E r
E 06 E E 06
04 04
02 - 02
0 —
0
02
-0.2
04 -
0.4
0.6
-0.6
08 -
» . -0.8
-1 _llllllllllllllllllllllllIllllllllllllllllllllllll 1 _|||||||| |||||||||| ||||||l|||| |||l|||||| L1 |-
0 01 02 03 04 05 06 07 0. 09 1 0 0. 02 0. 04 05 06 07 08 09 1 1 NI ERELY FERRE FRETE A VSN AR R i lad
0 01 02 03 04 05 06 07 08 09 1
t(s) t()
° t(s)

10 Hz sampling 5 Hz sampling
Conditions are:

Sine wave with f=4 Hz, phase offset ¢=0.1 i.e.,
h(t) = sin(@ + 2xft) = sin(0.1 + 87t)

Winter Semester 2006/7 Computational Physics I Lecture 12 10

Example
H(f)=["_sin(0.1+ 8mt)e* ™ dt

= [~ sin(0.1)cos(87t) e dt + [~ _cos(0.1)sin(87t) e 7™ dt

8 it —8 it 8 it —8 it
. ey - we =
= sin(0.1)[~. < 26 e dt + cos(0.1)] 7 S —°

e ™ dt
Recall the relation:
[~ e*™* df =8(x) where 8(x) is the Dirac Delta function

so we have
it —&mit it —8mit
e*™ dt + cos(0.1)[

H(f)=sin(0.1)]~.° e gy

_ sin(0.1) joo p2Mit(f+4) | 2mit(f=4) 3 cos(0.1) Joo p2mit(f+4) _ 2mit(f=4) 1,
2 —o0 2 —o00

= SIODrs 1 ay 4607 -]+ SOV 607 44— 507 - 4]

Winter Semester 2006/7 Computational Physics I Lecture 12 11

Discrete Fourier Transform

Suppose we have N consecutive sampled points

h,=h(t,), t,=kA, k=0,12,---,N-1

We can extract the amplitude for N frequency components since
we have N data points. Define the frequency components as

1
f, En(j n:—];’,...,];] (take N even)

Note: there are N+1 frequencies, but we will find that the two at
the ends are equal, so only N independent. Negative frequencies
allows us to include sine and cosine terms So

H(f) Jw h(t)BZMftdt~ 2 hkezﬂ'lffA AZ h 27Tlka —AZ h 2rikn | N
k=0 k=0

NS 2mikn/ N
= ; he Discrete Fourier Transform

Winter Semester 2006/7 Computational Physics I Lecture 12 12

Discrete Fourier Transform

The discrete fourier transform does not depend on any
dimensional parameters.

2 Ti . ik -7 .
Note H—n =Hy_, [e k(N =n)I N —e mke ikn /N — e mkn/N]

In particular H_, ,=H, ,

We can therefore rewrite the sum as follows

N-1 .
H, =Y he™" n=0,-,N-1
k=0

Discrete inverse Fourier transform

1 N-1

h,=—73Y He™N k=0, ,N-1
anO

Winter Semester 2006/7 Computational Physics I Lecture 12 13

Discrete Fourier Transform

*

* Get the discrete Fourier components
Do n=0,63
Hn(n,1)=0.D0
Hn(n,2)=0.D0
Do k=0,63
Hn(n,1)=Hn(n,1)
& +amplitude(k,1)*dcos(twopi*k*n/64.)
& -amplitude(k,2)*dsin(twopi*k*n/64.) amplitude(k,1) real components
Hn(n,2)=Hn(n,2) amplitude(k,2) imaginary components
& +amplitude(k,1)*dsin(twopi*k*n/64.)
& +amplitude(k,2)*dcos(twopi*k*n/64.)
Enddo
Write (11,*) N,Hn(N,1),Hn(N,2)
Enddo

Winter Semester 2006/7 Computational Physics I Lecture 12 14

Let’s try it out on our sine wave data:

Discrete Fourier Transform

Recall, signal f=4 Hz

Here’s the result (64 points):

15

12.5

Re(H,)

10

7.5

5

2.5

0

-2.5

-5

-7.5

10|||||[|||

Winter Semester 2006/7

25

Im{H,)

20

15

10

5

0

-5

-10

-15

=20

- . ®
o L4
— [/ —
- L J
C . .
C .
25 Coaa oo a ol
0 20 40 60
n

Computational Physics 1

amplitude

Coon bl b LA b el Lo Tad
0 01 02 03 04 05 06 07 08 09 1

t(s)

Large components are:

25
:7:39, =
f25 64-0.1 f26

J3s = Jea—26 = f-26

2

° _4
64-0.1

f39 = f64—25 = f_25

cos and sin needed because of
phase offset.

Lecture 12 15

Discrete Fourier Transform

Here's the inverse transform

*

* Now we try the inverse transform

*

Do n=0,63
amplitude(n,1)=0.D0 Inverse Fourier Transform
amplitude(n,2)=0.D0 L 1 r v w
Do k=0,63 2 o8 o

amplitude(n,1)=amplitude(n,1) o C

& +Hn(k,1)*dcos(twopi*k*n/64.) E o6 [

& +Hn(k,2)*dsin(twopi*k*n/64.) 04 - ’

amplitude(n,2)=amplitude(n,2) T or

& -Hn(k,1)*dsin(twopi*k*n/64.) 02 [

& +Hn(k,2)*dcos(twopi*k*n/64.) C)
Enddo 0 >:— » » ® ® ® ® ® . . L
Write (12,*) N,amplitude(n,1)/64.,amplitude(n,2)/64. 02

Enddo C

* 04
0.6 [. .
0.8 [
1 F b b b b b Lo L L
0 01 02 03 04 05 06 07 08 09 1

t(s)

Winter Semester 2006/7 Computational Physics I Lecture 12 16

Fast Fourier Transform

The discrete Fourier transforms as we described it requires a sum

over N terms for each of the N components. l.e., the number of
operations scales as N2. A large part of the success of Fourier

transforms for analysis of electronic signals, optical images, x-ray

tomography,..., results from the fact that a numerical algorithm
was found which requires of order Nlog,N operations - the so-
called Fast Fourier Transform (FFT). Here is how it works:

N-1 N/2-1 N/2-1

_ 2mifkIN o _ 27ik(2)/ N 2ik(2j+1)/N
Fp,=>e fi= X e fr+ 2 e Jait
j=0 j=0 j=0

N/2-1 N/2-1
_ 27ikj /(N 12) k 27ikj (N 12)
= Y e L tW" > e Jaj41

Jj=0 j=0
N

=F +W*F/ where W =e”™'"

What is won ? The sums in the individual terms in the last line
only have 1/2 as many terms, and the same factor appears

Winter Semester 2006/7 Computational Physics I Lecture 12

17

Fast Fourier Transform

To see how this works in detall, we take an explicit example of
having 8 data points (taking a power of 2 is important ! If you don't

have enough data, pad with zeroes).
F,=FS+W*F;
: 3 : 3 :
where W = eZTL’l/N, Fe — ZOWijfzj,FkO — Zowzk]f2j+1
J= J=
Now use a binary representation for the index k=4k,+2k;+k,
where the ks are 0,1. Then,

- o\ 24k, +2k +k,)] - - :
W2k — (ezm/s) _ 2k Ak 2k, 14) _ 27k 124k, 1 4) _ ypr 25(2Kk+E,)

l.e., the k, bit is irrelevant. So,
e ko
Fy = Fo i) TWEG)

1 0 12°%0

3
_ 272k +k,)
1°™0 1 ()) = 2 W ! f2]+1

3
e _ 2j(2k +k,) 0
(kk)=ZW f2j F(k,k
J=0 J=0

Winter Semester 2006/7 Computational Physics I Lecture 12 18

Fast Fourier Transform

Let’s try again:
3 1
e _ 2j(2k+k) o _ 2(2 j)(2k +k,) 22 j+1)(2k +k)
Fp=>W Lhi=2W faop T2 W Faajeny
j=0 j=0 j=0
1 1
_ 2(2 j)(2k +k,) 22k +k,) 2(2j)(2k +k,)
= _ZOW Jajy W ZOW a2+
J= J=

e _ ree 2(2k,+k,) meo

1

W 4/ (Zk+k) (627ti/8)(8k1+4k0)j — W 2k
and FkO — Fk0€ + ‘,‘/2(2kl+k0) Fkoo

Can perform one more step:
ere — F€€€ +W4kOF€€0 F€€€ — fO F€€0 — f4

The sums have disappeared !

Winter Semester 2006/7 Computational Physics I Lecture 12 19

Fast Fourier Transform

The final pieces are:

ere — [eee _I_W4kOFeeo _ fo +W4k°f4 Note kO:O,l
So, need 8 multiplications

eo __ rreoe 4k, rreoo __ 4k, L.]
Feo=F"+WnEFT=fH+W™fs and 8 additions for this
Fkoe — [roee +W4k°Fon _ fl +W4k°f5 Step
Fkoo — o0 +W4k°F000 _ f3 +W4k°f7

Then, F¢=F®+Ww2%k+kpe Here ky=0,1 k,=0,1
So, again 8 multiplications
0 _ roe 2(2k,+k,) 700 g]
Fy=F"+W F and 8 additions for this
step

Finally F, =F°+W*F° again 8 multiplications and
8 additions for this step

Winter Semester 2006/7 Computational Physics I Lecture 12 20

Fast Fourier Transform

So we need 2N operations per level, and there are log,N levels.
The scaling of the computational time is therefore Nlog,N rather
than N2,

E.g., N=1000 Nlog,N=1000*10=10% N2=106

How to implement in practice. Note that the trick is to find out
which value of n corresponds to which pattern of e,o in

Feoeooeoe... . f
— Jn

Answer: reverse pattern of e,0. Assign e=0, 0=1, and the binary

value gives n.

eee — eee — 000 — 0

examples
P oeo — eoe =010 =2

Winter Semester 2006/7 Computational Physics I Lecture 12 21

Some examples

. Agric. Food Chem., 52 (20), 6055 -6060, 2004. 10.1021/jf049240e S0021-8561(04)09240-4
Web Release Date: September 9, 2004
Copyright © 2004 American Chemical Society

Discrimination of Olives According to Fruit Quality Using Fourier Transform Raman Spectroscopy and Pattern
Recognition Techniques

Barbara Muik, Bernhard Lendl, Antonio Molina-Diaz, Domingo Ortega-Calderon,# and Maria José Ayora-Cafada*

Department of Physical and Analytical Chemistry, University of Jaén, Paraje las Lagunillas s/n, E-23071 Jaén,
Spain; Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164,
A-1060 Wien, Austria; and CIFA Venta del Llano, IFAPA, Ctra. Bailén-Motril km 18.5, E-23620 Mengibar, Jaén,
Spain

Multiplication of large integers
The fastest known algorithms for the multiplication of large integers or polynomials are based on the discrete
Fourier transform: the sequences of digits or coefficients are interpreted as vectors whose convolution needs to

be computed; in order to do this, they are first Fourier-transformed, then multiplied component-wise, then
transformed back.

Winter Semester 2006/7 Computational Physics I Lecture 12 22

Power Spectrum

The autocorrelation of a function iIs
Corrly)()= |7 y(1) y(t +7) dt

and the power spectrum is defined as the Fourier transform of
the autocorrelation

PS[Y1(f)= |~ Corrlyl(r)e’™* dt

For a periodic function, the correlation is often defined as the
expectation value. There is no convention on the normalization,
so be careful about the values. Best to see which frequencies
dominate a given spectrum. Here is a practical approach for a

discretely sampled function:
N-1 ik /N
C,= 2 ce & k=01,...,.N—1

J=0

Winter Semester 2006/7 Computational Physics I Lecture 12 23

Power Spectrum

1
PO)=P(fy)="5/Cof
1 N
P = a[el +enr] k=125 1)

1
P(fc) = P(fN/z) = NzCN/z2

P(f)

Let’s try it out on our example: 025

The 4Hz frequency is picked out. N

0.1

0.05

005

Winter Semester 2006/7

Ji =

Computational Physics 1

where only positive

frequencies are
considered:

k _
NA

Inverse Fourier Transform

k
2f.— k=0]1...
ey

N | =

Lecture 12 24

Noise

We now add some noise to our spectrum (Gaussian smearing
with 6=0.5) and see what happens:

Inverse Fourier Transform

amplitude

—~ 03
1 - - —~ 15 F —~ 25 [£
: T b e Tk L
08 [12 i £ 2 : 025 [
06 10 - 15F . F
£t * E E 0.2
04 - 7.5 10 L
02 [s F . sfEoor e 015 [
N . F E » C
o[25 v 0 / / ~— F
r . E o 01 |
0.2 0 - \. ! S e LI +
F E . . F L
04 25 — -10 - 0.05
n r £ »
0.6 . . 5 F 15
L F E 0 Lo .
08 [75 ¢ 20 F
F . . E E r
1 ol b b b b b b b b 10 Coavalaoa bl 25 Coaalo o loa s -0.05 L1 L1 L1 L1 L1 L
0 01 02 03 04 05 06 07 08 09 1 0 20 40 60 0 20 40 60 0 1 2 3 4 5
t (S)] n f (HZ)
Inverse Fourier Transform
Data sample Data sample
— 20 o~ 20 ~035 - :
g 4 < T £ f ’ T of Y
—g \a_’/ . e L r * a C
2 3F @ £ s | 03 -
o 15 — F u
£ . F
e e 025 -
, b 10
. : ..
. 1 o 02 |
1r- ¢ . S i . ® -
(o N » . L] L ° »® -
+* . . * o r
0 [* -" . R ‘o 5 N Seans® ’° 0 i‘.o :.."‘ 2 0.15
. - o,V
. LY e - - . «*
. w L] s *° - 0.1 i
r « . . hd Cen® . ® ~
15 ’ . 0 [e 5 .
E ro %, > r 0.05 o E— R R [
2 - L . 10 o : : F s
C L taa C L P ’y
S5 N - = » eaveen’
3 - =15
! ! ! ! ! ! Lol | | .| | -0.05 ' ' : '
g oo Lo bov e b Lo L -10 vl 20 [| . 0 1 2 3 1 5
0 1 2 3 4 5 6 20 40 60 20 40 60
f (Hz)
t(s) n n

Winter Semester 2006/7 Computational Physics [Lecture 12

Exercizes

1. Solve the % minimization problem from last lecture with
MINUIT.

2. Generate 64 data points using
f(t)=cos(m/4 +2nft) + cos(2mf,t) f1=05,f,=1 A=0.2

and fit with a discrete Fourier transform. Extract the power
spectrum.

Winter Semester 2006/7 Computational Physics I Lecture 12 26

