
Winter Semester 2006/7 Computational Physics I Lecture 12 1

Other Optimization Techniques

Conjugate Gradient

Similar to steepest descent, but slightly different way of choosing

direction of next step:

x r +1 =

x r + r

s r

s 0 =

g 0

s r +1 =

g r +1 + r +1

s r{

new term

r is chosen to minimize h(

x r +1). This yields

g r +1
t

g r = 0

Here we allow a further step in the

s r direction. One choice

(Fletcher - Reeves) for r +1 is

r +1 =
gr +1

2

gr
2

Winter Semester 2006/7 Computational Physics I Lecture 12 2

Newton-Raphson

Assume the function that we want to minimize is twice

differentiable. Then, a Taylor expansion gives

h(

x +

) a +

b t

 +
1
2

tC

where

a = h(

x),

b =

 h(

x) =

g (

x), C =

2h

xi x j

 = H

Now

 h(

x +

)

b + C

 Because C is symmetric (check)

For an extremum, we have

b + C

 = 0

 = C 1

b

x r +1 =

x r H(

x r)

1
g (

x r)or

Winter Semester 2006/7 Computational Physics I Lecture 12 3

Newton-Raphson

x r +1 =

x r H(

x r)

1
g (

x r)

i.e., the search direction is

s = H(

x r) 1

g (

x r) and =1

This converges quickly (if you start with a good guess), but the

penalty is that the Hessian needs to be calculated (usually

numerically)

Again, convergence is when is sufficiently small

s

How would we calculate the Hessian numerically ? Use Lagrange

polynomial in several dimensions and work it out

Winter Semester 2006/7 Computational Physics I Lecture 12 4

Bounded Regions

The standard tool for minimization in particle physics is the

MINUIT program (CERN library). It has also made its way well

outside the particle physics community.

Author: Fred James

Here is how MINUIT handles bounded search regions - it

transforms the parameter to be optimized as follows:

 = arcsin 2
a

b a
1

 = a +

b a

2
sin + 1()

 is the exernal (user) parameter

 is the internal parameter

MINUIT is available within PAW, ROOT …

Winter Semester 2006/7 Computational Physics I Lecture 12 5

MINUIT

MINUIT uses a (variable metric) conjugate gradient search

algorithm (along with others). Basic idea:

• assume that the function to minimize can be approximated by a

quadratic form near the minimum

• build up iteratively an approximation for the inverse of the

Hessian matrix. Recall

the approximation for the Hessian is updated as follows:

h(

x +

) h(

x) +

 h(

x)

 +
1
2

tH

Hi +1 = Hi +
(

x i +1

x i) (

x i +1

x i)

(

x i +1

x i) (

 hi +1

 hi)

Hi (

 hi +1

 hi)[] Hi (

 hi +1

 hi)[]
(

 hi +1

 hi) Hi (

 hi +1

 hi)

where the symbol represents an outer product of two vectors (a matrix)

a

b ()
ij

= aib j

Winter Semester 2006/7 Computational Physics I Lecture 12 6

Fourier Transforms

Fourier transforms are very important

• as a way of summarizing the data with a few parameters

• because the transform of the data is itself very interesting (e.g.,
power spectrum, momentum coordinate space

representation,…)

H(f) = h(t) e2 ift dt H(f) frequency domain representation

h(t) = H(f) e 2 ift dt h(t) time domain representation

Warning: there is no unanimity on 2 factors in front of the

integral. Often the angular frequency is used = 2 f

H() = h(t) ei t dt h(t) =
1
2

H() e i t d

Winter Semester 2006/7 Computational Physics I Lecture 12 7

Fourier Transform

Fourier Transform is a linear operation:

• transform of the sum of two functions is the sum of the

transforms

• the transform of a constant times a function is constant times the

transform

h(t) real H(f) = H(f)[]
*

h(t) imaginary H(f) = H(f)[]
*

h(t) even H(f) = H(f)

h(t) odd H(f) = H(f)

h(t) real,even H(f) real, even

h(t) real,odd H(f) imaginary, odd

h(t) imaginary,even H(f) imaginary, even

h(t) imaginary,odd H(f) real, odd

Winter Semester 2006/7 Computational Physics I Lecture 12 8

Fourier Transform

Further properties: h(at)
1
a
H

f

a

1
b
h
t

b

H bf()

h(t t0) H f()e2 ift
0

h(t)e 2 if
0
t H(f f0)

We are typically interested in the Fourier analysis of a discretely

sampled data set. Define the time step (taken to be constant

here) as . The sampling rate (frequency) is 1/ . Define the

samples as

 hn = h(n) n = , 3, 2, 1,0,1,2,3,

Winter Semester 2006/7 Computational Physics I Lecture 12 9

Nyquist frequency

fc
1
2

Nyquist frequency

This is the highest frequency which can be resolved with a

sampling frequency f=1/ . If a continuous function h(t) is limited

in frequency components to frequencies less than fc, then h(t) is

completely determined by its samples hn. It can then be written

as follows:

h(t) = hn
sin 2 fc (t n)[]

(t n)n=

However, if there are frequency components which are higher

than fc, then they will be spuriously moved in the range f<fc
(aliasing).

Winter Semester 2006/7 Computational Physics I Lecture 12 10

Example

Data Fit Aliasing

Conditions are:

Sine wave with f=4 Hz, phase offset =0.1 i.e.,

h(t) = sin(+ 2 ft) = sin(0.1+ 8 t)

10 Hz sampling 5 Hz sampling

Winter Semester 2006/7 Computational Physics I Lecture 12 11

Example

H(f) = sin(0.1+ 8 t)e2 iftdt

= sin(0.1)cos(8 t)e2 iftdt + cos(0.1)sin(8 t)e2 iftdt

= sin(0.1)
e8 it

+ e 8 it

2
e2 iftdt + cos(0.1)

e8 it e 8 it

2
e2 iftdt

Recall the relation:

e2 ifx df = (x) where (x) is the Dirac Delta function

so we have

H(f) = sin(0.1)
e8 it

+ e 8 it

2
e2 iftdt + cos(0.1)

e8 it e 8 it

2
e2 iftdt

=
sin(0.1)
2

e2 it(f +4)
+ e2 it(f 4)dt +

cos(0.1)
2

e2 it(f +4) e2 it(f 4)dt

=
sin(0.1)
2

(f + 4) + (f 4)[] +
cos(0.1)
2

(f + 4) (f 4)[]

Winter Semester 2006/7 Computational Physics I Lecture 12 12

Discrete Fourier Transform

Suppose we have N consecutive sampled points

 hk h(tk), tk k , k = 0,1,2, ,N 1

H(fn) = h(t)e2 if
n
tdt hke

2 if
n
t
k

k= 0

N 1
= hke

2 if
n
k

k= 0

N 1
= hke

2 ikn /N

k= 0

N 1

Hn hke
2 ikn /N

k= 0

N 1

We can extract the amplitude for N frequency components since

we have N data points. Define the frequency components as

fn
n

N

1

n =

N

2
,...,

N

2
 (take N even)

Note: there are N+1 frequencies, but we will find that the two at

the ends are equal, so only N independent. Negative frequencies

allows us to include sine and cosine terms. So

Discrete Fourier Transform

Winter Semester 2006/7 Computational Physics I Lecture 12 13

Discrete Fourier Transform

The discrete fourier transform does not depend on any

dimensional parameters.

Note

In particular

We can therefore rewrite the sum as follows

H n = HN n e2 ik(N n) /N
= e2 ike 2 ikn /N

= e 2 ikn /N[]

Hn hke
2 ikn /N n = 0, ,N 1

k= 0

N 1

H N / 2 = HN / 2

Discrete inverse Fourier transform

hk =
1
N

Hne
2 ikn /N k = 0, ,N 1

n= 0

N 1

Winter Semester 2006/7 Computational Physics I Lecture 12 14

Discrete Fourier Transform

*

* Get the discrete Fourier components

*

 Do n=0,63

 Hn(n,1)=0.D0

 Hn(n,2)=0.D0

 Do k=0,63

 Hn(n,1)=Hn(n,1)

 & +amplitude(k,1)*dcos(twopi*k*n/64.)

 & -amplitude(k,2)*dsin(twopi*k*n/64.)

 Hn(n,2)=Hn(n,2)

 & +amplitude(k,1)*dsin(twopi*k*n/64.)

 & +amplitude(k,2)*dcos(twopi*k*n/64.)

 Enddo

 Write (11,*) N,Hn(N,1),Hn(N,2)

 Enddo

amplitude(k,1) real components

amplitude(k,2) imaginary components

Winter Semester 2006/7 Computational Physics I Lecture 12 15

Discrete Fourier Transform

Let’s try it out on our sine wave data:

Recall, signal f=4 Hz

Here’s the result (64 points):

Large components are:

f25 =
25

64 0.1
= 3.9, f26 =

26
64 0.1

= 4.06

f38 = f64 26 = f 26 f39 = f64 25 = f 25

cos and sin needed because of

phase offset.

Winter Semester 2006/7 Computational Physics I Lecture 12 16

Discrete Fourier Transform

Here’s the inverse transform
*

* Now we try the inverse transform

*

 Do n=0,63

 amplitude(n,1)=0.D0

 amplitude(n,2)=0.D0

 Do k=0,63

 amplitude(n,1)=amplitude(n,1)

 & +Hn(k,1)*dcos(twopi*k*n/64.)

 & +Hn(k,2)*dsin(twopi*k*n/64.)

 amplitude(n,2)=amplitude(n,2)

 & -Hn(k,1)*dsin(twopi*k*n/64.)

 & +Hn(k,2)*dcos(twopi*k*n/64.)

 Enddo

 Write (12,*) N,amplitude(n,1)/64.,amplitude(n,2)/64.

 Enddo

*

Winter Semester 2006/7 Computational Physics I Lecture 12 17

Fast Fourier Transform

The discrete Fourier transforms as we described it requires a sum

over N terms for each of the N components. I.e., the number of

operations scales as N2. A large part of the success of Fourier

transforms for analysis of electronic signals, optical images, x-ray

tomography,…, results from the fact that a numerical algorithm

was found which requires of order Nlog2N operations - the so-

called Fast Fourier Transform (FFT). Here is how it works:

Fk = e2 ijk /N f j
j= 0

N 1
= e2 ik(2 j) /N f2 j

j= 0

N / 2 1
+ e2 ik(2 j+1) /N f2 j+1

j= 0

N / 2 1

= e2 ikj /(N / 2) f2 j
j= 0

N / 2 1
+W k e2 ikj /(N / 2) f2 j+1

j= 0

N / 2 1

= Fk
e

+W kFk
o where W e2 i /N

What is won ? The sums in the individual terms in the last line

only have 1/2 as many terms, and the same factor appears

Winter Semester 2006/7 Computational Physics I Lecture 12 18

Fast Fourier Transform

To see how this works in detail, we take an explicit example of

having 8 data points (taking a power of 2 is important ! If you don’t

have enough data, pad with zeroes).
Fk = Fk

e
+W kFk

o

where W e2 i /N , Fk
e W 2kj f2 j

j= 0

3
, Fk

o W 2kj f2 j+1
j= 0

3

Now use a binary representation for the index k=4k2+2k1+k0

where the ki’s are 0,1. Then,

W 2kj
= e2 i / 8()

2(4k
2

+2k
1

+ k
0
) j

= e2 i(k
2

+ k
1
/ 2+ k

0
/ 4)

= e2 i(k
1
/ 2+ k

0
/ 4)

= W 2 j(2k
1

+ k
0
)

i.e., the k2 bit is irrelevant. So,

Fk = F(k
1
,k

0
)

e
+W kF(k

1
,k

0
)

o

F(k
1
,k

0
)

e W 2 j(2k
1

+ k
0
) f2 j

j= 0

3
F(k

1
,k

0
)

o W 2 j(2k
1

+ k
0
) f2 j+1

j= 0

3

Winter Semester 2006/7 Computational Physics I Lecture 12 19

Fast Fourier Transform

Let’s try again:

Fk
e

= W 2 j(2k
1

+ k
0
) f2 j

j=0

3
= W 2(2 j)(2k

1
+ k

0
) f2(2 j) +

j=0

1
W 2(2 j+1)(2k

1
+ k

0
) f2(2 j+1)

j=0

1

= W 2(2 j)(2k
1

+ k
0
) f2(2 j) +

j=0

1
W 2(2k

1
+ k

0
) W 2(2 j)(2k

1
+ k

0
) f2(2 j+1)

j=0

1

Fk
e

= Fk
ee

+W 2(2k
1

+ k
0
)Fk

eo

W 4 j(2k
1

+ k
0
)

= e2 i / 8()
(8k

1
+4k

0
) j

= W 2 jk
0

and Fk
o

= Fk
oe

+W 2(2k
1

+ k
0
)Fk

oo

Can perform one more step:

Fk
ee

= F eee
+W 4k

0F eeo F eee
= f0 F eeo

= f4

The sums have disappeared !

Winter Semester 2006/7 Computational Physics I Lecture 12 20

Fast Fourier Transform

Fk
ee

= F eee
+W 4k

0F eeo
= f0 +W 4k

0 f4

Fk
eo

= F eoe
+W 4k

0F eoo
= f2 +W 4k

0 f6

Fk
oe

= Foee
+W 4k

0Foeo
= f1 +W 4k

0 f5

Fk
oo

= Fooe
+W 4k

0Fooo
= f3 +W 4k

0 f7

The final pieces are:

Note k0=0,1

So, need 8 multiplications

and 8 additions for this

step

Then, Fk
e

= F ee
+W 2(2k

1
+ k

0
)F eo

Fk
o

= Foe
+W 2(2k

1
+ k

0
)Foo

Here k0=0,1 k1=0,1

So, again 8 multiplications

and 8 additions for this

step

Finally Fk = F e
+W kF o

again 8 multiplications and

8 additions for this step

Winter Semester 2006/7 Computational Physics I Lecture 12 21

Fast Fourier Transform

So we need 2N operations per level, and there are log2N levels.

The scaling of the computational time is therefore Nlog2N rather

than N2.

E.g., N=1000 Nlog2N 1000*10=104 N2=106

How to implement in practice. Note that the trick is to find out

which value of n corresponds to which pattern of e,o in

F eoeooeoe...
= fn

Answer: reverse pattern of e,o. Assign e=0, o=1, and the binary

value gives n.

eee eee 000 0

oeo eoe 010 2
examples

Winter Semester 2006/7 Computational Physics I Lecture 12 22

Some examples

. Agric. Food Chem., 52 (20), 6055 -6060, 2004. 10.1021/jf049240e S0021-8561(04)09240-4

Web Release Date: September 9, 2004

Copyright © 2004 American Chemical Society

Discrimination of Olives According to Fruit Quality Using Fourier Transform Raman Spectroscopy and Pattern

Recognition Techniques

Barbara Muik, Bernhard Lendl, Antonio Molina-Díaz, Domingo Ortega-Calderón,# and María José Ayora-Cañada*

Department of Physical and Analytical Chemistry, University of Jaén, Paraje las Lagunillas s/n, E-23071 Jaén,

Spain; Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164,

A-1060 Wien, Austria; and CIFA Venta del Llano, IFAPA, Ctra. Bailén-Motril km 18.5, E-23620 Mengíbar, Jaén,

Spain

Multiplication of large integers

The fastest known algorithms for the multiplication of large integers or polynomials are based on the discrete

Fourier transform: the sequences of digits or coefficients are interpreted as vectors whose convolution needs to

be computed; in order to do this, they are first Fourier-transformed, then multiplied component-wise, then

transformed back.

…

Winter Semester 2006/7 Computational Physics I Lecture 12 23

Power Spectrum

Corr[y]() = y(t)*y(t +) dt

The autocorrelation of a function is

and the power spectrum is defined as the Fourier transform of

the autocorrelation

PS[y](f) = Corr[y]()e2 if d

For a periodic function, the correlation is often defined as the

expectation value. There is no convention on the normalization,

so be careful about the values. Best to see which frequencies

dominate a given spectrum. Here is a practical approach for a

discretely sampled function:

Ck = c je
2 ijk /N

j=0

N 1
k = 0,1,…,N 1

Winter Semester 2006/7 Computational Physics I Lecture 12 24

Power Spectrum

P(0) = P(f0) =
1

N 2 C0
2

P(fk) =
1

N 2 Ck
2

+ CN k
2[] k = 1,2,…,

N

2
1

P(fc) = P(fN / 2) =
1

N 2 CN / 2
2

where only positive

frequencies are

considered:

fk

k

N
= 2 fc

k

N
k = 0,1,…,

N

2

Let’s try it out on our example:

The 4Hz frequency is picked out.

Winter Semester 2006/7 Computational Physics I Lecture 12 25

Noise

We now add some noise to our spectrum (Gaussian smearing
with =0.5) and see what happens:

Winter Semester 2006/7 Computational Physics I Lecture 12 26

Exercizes

1. Solve the 2 minimization problem from last lecture with

MINUIT.

2. Generate 64 data points using

and fit with a discrete Fourier transform. Extract the power

spectrum.

f (t) = cos(/4 + 2 f1t) + cos(2 f2t) f1 = 0.5, f2 = 1 = 0.2

