Other Optimization Techniques

Conjugate Gradient

Similar to steepest descent, but slightly different way of choosing
direction of next step:

r r-r
So =—80
S,e1 =81t ﬁr+1§r
—
new term

A, is chosen to minimize h(X,,,). This yields g;,,8. =0

r
Here we allow a further step in the 5, direction. One choice

(Fletcher - Reeves) for 3, is

2
_ 8 r+1
ﬁ r+1 — 2
’
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Newton-Raphson

Assume the function that we want to minimize is twice
differentiable. Then, a Taylor expansion gives

hZ+d)=a+b'o+ %aﬁc&

Q!

2
where a=h(®), Bb=Vhx) =3, c=£ Jh j:H
o0l ;

Now Vh(+a)=b+Cda Because C is symmetric (check)

For an extremum, we have b+Ca =0 a=-C'b

—

or Xril :Xr_H(xr)_lg(xr)
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Newton-Raphson

5(5,,_,_1 = Xr o H(xr)_lg(xr)
i.e., the search directionis 5=H(%,) 'g(X,) and A=1

This converges quickly (if you start with a good guess), but the
penalty is that the Hessian needs to be calculated (usually

numerically)
Again, convergence is when s Is sufficiently small

How would we calculate the Hessian numerically ? Use Lagrange
polynomial in several dimensions and work it out
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Bounded Regions

The standard tool for minimization in particle physics is the
MINUIT program (CERN library). It has also made its way well
outside the particle physics community.

Author: Fred James

Here is how MINUIT handles bounded search regions - it
transforms the parameter to be optimized as follows:

A—a b—a

b—a

A = arcsin(Z — l) A=a+ (sinA” +1)

A is the exernal (user) parameter

A’ is the internal parameter

MINUIT is available within PAW, ROOT ...
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MINUIT

MINUIT uses a (variable metric) conjugate gradient search
algorithm (along with others). Basic idea:

e assume that the function to minimize can be approximated by a

guadratic form near the minimum
* build up iteratively an approximation for the inverse of the

Hessian matrix. Recall

_ 1
h(X+ @) =h(X)+Vh(X) a+ E(TH&

the approximation for the Hessian is updated as follows:

(3_5141 B 56}) ® (3_5141 _ 56}) . [Hi ' (Vhiﬂ N th)] ® [Hi ' (Vhiﬂ o th)]
Xy — %) (Vhi+1 - Vhi) (th - Vhi) H; - (th - Vhi)
where the ® symbol represents an outer product of two vectors (a matrix)

(@®b) =ab,
ij J
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Fourier Transforms

Fourier transforms are very important

e as a way of summarizing the data with a few parameters

* because the transform of the data is itself very interesting (e.g.,
power spectrum, momentum«coordinate space
representation,...)

H(f)= [h(t) e*™ dt H(f) frequency domain representation
()= [H(f)e ™ dt h(t) time domain representation

Warning: there is no unanimity on 27 factors in front of the
Integral. Often the angular frequency is used ®=2xf

H(w) = Th(r) e'”dt h(t)= ;ﬂ TH(a)) e ' dw
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Fourier Transform

Fourier Transform is a linear operation:

e transform of the sum of two functions is the sum of the
transforms

 the transform of a constant times a function is constant times the
transform

h(1) real H-/)=[H]

h(r) imaginary  H(-f)=-[H(f)]
h(t) even H(-f)=H(f)

h(t) odd H(-f)=-H(f)

h(t) real,even H(f) real, even

h(t) real,odd H(f) imaginary, odd

h(t) imaginary,even H(f) imaginary, even
h(t) imaginary,odd H(f) real, odd
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Fourier Transform

Further properties: /.y <, 1H(f)
a

1) G
h(t—ty)) & H(f)e™"
h(e™™" < H(f = f)

We are typically interested in the Fourier analysis of a discretely
sampled data set. Define the time step (taken to be constant
here) as A. The sampling rate (frequency) is 1/A. Define the
samples as

h, = h(nA) n=--,-3-2,-10123,--
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Nyquist frequency

1 .
=__ Nvyquist frequenc
fe A yQ g y

This is the highest frequency which can be resolved with a
sampling frequency f=1/A. If a continuous function h(t) is limited
in frequency components to frequencies less than f_, then h(t) is

completely determined by its samples h,,. It can then be written
as follows:

2, sin[2af.(t— nA)]
wlD) = Anzz_m & (t — nA)

However, if there are frequency components which are higher
than f_, then they will be spuriously moved in the range f<f,
(aliasing).
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Example

bata Fit Aliasing

o 1 o p 1
o o o
35 35 35
£ 08 [ = £ 08
o = =3
E r
E 06 E E 06
04 04
02 - 02
0 —
0
02
-0.2
04 -
0.4
0.6
-0.6
08 -
» . -0.8
-1 _llllllllllllllllllllllllIllllllllllllllllllllllll 1 _|||||||| |||||||||| ||||||l|||| |||l|||||| L1 |-
0 01 02 03 04 05 06 07 0. 09 1 0 0. 02 0. 04 05 06 07 08 09 1 1 NI ERELY FERRE FRETE A VSN AR R i lad
0 01 02 03 04 05 06 07 08 09 1
t(s) t()
° t(s)

10 Hz sampling 5 Hz sampling
Conditions are:

Sine wave with f=4 Hz, phase offset ¢=0.1 i.e.,
h(t) = sin(@ + 2xft) = sin(0.1 + 87t)
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Example
H(f)=["_sin(0.1+ 8mt)e* ™ dt

= [~ sin(0.1)cos(87t) e dt + [~ _cos(0.1)sin(87t) e 7™ dt

8 it —8 it 8 it —8 it
. ey - we =
= sin(0.1)[~. < 26 e dt + cos(0.1)] 7 S —°

e ™ dt
Recall the relation:
[~ e*™* df =8(x) where 8(x) is the Dirac Delta function

so we have
it —&mit it —8mit
e*™ dt + cos(0.1)[

H(f)=sin(0.1)]~.° e gy

_ sin(0.1) joo p2Mit(f+4) | 2mit(f=4) 3 cos(0.1) Joo p2mit(f+4) _ 2mit(f=4) 1,
2 —o0 2 —o00

= SIODrs 1 ay 4607 -]+ SOV 607 44— 507 - 4]
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Discrete Fourier Transform

Suppose we have N consecutive sampled points

h,=h(t,), t,=kA, k=0,12,---,N-1

We can extract the amplitude for N frequency components since
we have N data points. Define the frequency components as

1
f, En(j n:—];’,...,];] (take N even)

Note: there are N+1 frequencies, but we will find that the two at
the ends are equal, so only N independent. Negative frequencies
allows us to include sine and cosine terms So

H(f) Jw h(t)BZMftdt~ 2 hkezﬂ'lffA AZ h 27Tlka —AZ h 2rikn | N
k=0 k=0

NS 2mikn/ N
= ; he Discrete Fourier Transform
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Discrete Fourier Transform

The discrete fourier transform does not depend on any
dimensional parameters.

2 Ti . ik -7 .
Note H—n =Hy_, [e k(N =n)I N —e mke ikn /N — e mkn/N]

In particular  H_, ,=H, ,

We can therefore rewrite the sum as follows

N-1 .
H, =Y he™" n=0,-,N-1
k=0

Discrete inverse Fourier transform

1 N-1

h,=—73Y He™N k=0, ,N-1
anO
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Discrete Fourier Transform

*

* Get the discrete Fourier components
Do n=0,63
Hn(n,1)=0.D0
Hn(n,2)=0.D0
Do k=0,63
Hn(n,1)=Hn(n,1)
& +amplitude(k,1)*dcos(twopi*k*n/64.)
& -amplitude(k,2)*dsin(twopi*k*n/64.) amplitude(k,1) real components
Hn(n,2)=Hn(n,2) amplitude(k,2) imaginary components
& +amplitude(k,1)*dsin(twopi*k*n/64.)
& +amplitude(k,2)*dcos(twopi*k*n/64.)
Enddo
Write (11,*) N,Hn(N,1),Hn(N,2)
Enddo
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Let’s try it out on our sine wave data:

Discrete Fourier Transform

Recall, signal f=4 Hz

Here’s the result (64 points):

15

12.5

Re(H,)

10

7.5

5

2.5

0

-2.5

-5

-7.5

_10_|||||[|||
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Im{H,)

20

15

10

5

0

-5

-10

-15

=20

- . ®
o L4
— [/ —
- L J
C . .
C .
25 Coaa oo a ol
0 20 40 60
n

Computational Physics 1

amplitude

Coon bl b LA b el Lo Tad
0 01 02 03 04 05 06 07 08 09 1

t(s)

Large components are:

25
:7:39, =
f25 64-0.1 f26

J3s = Jea—26 = f-26

2

° _4
64-0.1

f39 = f64—25 = f_25

cos and sin needed because of
phase offset.
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Discrete Fourier Transform

Here's the inverse transform

*

* Now we try the inverse transform

*

Do n=0,63
amplitude(n,1)=0.D0 Inverse Fourier Transform
amplitude(n,2)=0.D0 L 1 r v w
Do k=0,63 2 o8 o

amplitude(n,1)=amplitude(n,1) o C

& +Hn(k,1)*dcos(twopi*k*n/64.) E o6 [

& +Hn(k,2)*dsin(twopi*k*n/64.) 04 - ’

amplitude(n,2)=amplitude(n,2) T or

& -Hn(k,1)*dsin(twopi*k*n/64.) 02 [

& +Hn(k,2)*dcos(twopi*k*n/64.) C )
Enddo 0 >:— » » ® ® ® ® ® . . L
Write (12,*) N,amplitude(n,1)/64.,amplitude(n,2)/64. 02

Enddo C

* 04
0.6 [ . .
0.8 [
1 F b b b b b Lo L L
0 01 02 03 04 05 06 07 08 09 1

t(s)
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Fast Fourier Transform

The discrete Fourier transforms as we described it requires a sum

over N terms for each of the N components. l.e., the number of
operations scales as N2. A large part of the success of Fourier

transforms for analysis of electronic signals, optical images, x-ray

tomography,..., results from the fact that a numerical algorithm
was found which requires of order Nlog,N operations - the so-
called Fast Fourier Transform (FFT). Here is how it works:

N-1 N/2-1 N/2-1

_ 2mifkIN o _ 27ik(2 )/ N 2ik(2j+1)/N
Fp,=>e fi= X e fr+ 2 e Jait
j=0 j=0 j=0

N/2-1 N/2-1
_ 27ikj /(N 12) k 27ikj (N 12)
= Y e L tW" > e Jaj41

Jj=0 j=0
N

=F +W*F/ where W =e”™'"

What is won ? The sums in the individual terms in the last line
only have 1/2 as many terms, and the same factor appears
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Fast Fourier Transform

To see how this works in detall, we take an explicit example of
having 8 data points (taking a power of 2 is important ! If you don't

have enough data, pad with zeroes).
F,=FS+W*F;
: 3 : 3 :
where W = eZTL’l/N, Fe — ZOWijfzj,FkO — Zowzk]f2j+1
J= J=
Now use a binary representation for the index k=4k,+2k;+k,
where the ks are 0,1. Then,

- o\ 24k, +2k +k,) ] - - :
W2k — (ezm/s) _ 2k Ak 2k, 14) _ 27k 124k, 1 4) _ ypr 25(2Kk+E,)

l.e., the k, bit is irrelevant. So,
e ko
Fy = Fo i) TWEG )

1 0 12°%0

3
_ 272k +k,)
1°™0 1 ()) = 2 W ! f2]+1

3
e _ 2j(2k +k,) 0
(kk)=ZW f2j F(k,k
J=0 J=0
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Fast Fourier Transform

Let’s try again:
3 1
e _ 2j(2k+k) o _ 2(2 j)(2k +k,) 22 j+1)(2k +k )
Fp=>W Lhi=2W faop T2 W Faajeny
j=0 j=0 j=0
1 1
_ 2(2 j)(2k +k,) 22k +k,) 2(2j)(2k +k,)
= _ZOW Jajy W ZOW a2+
J= J=

e _ ree 2(2k,+k,) meo

1

W 4/ (Zk+k) (627ti/8)(8k1+4k0)j — W 2k
and FkO — Fk0€ + ‘,‘/2(2kl+k0 ) Fkoo

Can perform one more step:
ere — F€€€ +W4kOF€€0 F€€€ — fO F€€0 — f4

The sums have disappeared !
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Fast Fourier Transform

The final pieces are:

ere — [eee _I_W4kOFeeo _ fo +W4k°f4 Note kO:O,l
So, need 8 multiplications

eo __ rreoe 4k, rreoo __ 4k, L. ]
Feo=F"+WnEFT=fH+W™fs  and 8 additions for this
Fkoe — [roee +W4k°Fon _ fl +W4k°f5 Step
Fkoo — o0 +W4k°F000 _ f3 +W4k°f7

Then, F¢=F®+Ww2%k+kpe  Here ky=0,1 k,=0,1
So, again 8 multiplications
0 _ roe 2(2k,+k,) 700 g ]
Fy=F"+W F and 8 additions for this
step

Finally  F, =F°+W*F° again 8 multiplications and
8 additions for this step
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Fast Fourier Transform

So we need 2N operations per level, and there are log,N levels.
The scaling of the computational time is therefore Nlog,N rather
than N2,

E.g., N=1000 Nlog,N=1000*10=10% N2=106

How to implement in practice. Note that the trick is to find out
which value of n corresponds to which pattern of e,o in

Feoeooeoe... . f
— Jn

Answer: reverse pattern of e,0. Assign e=0, 0=1, and the binary

value gives n.

eee — eee — 000 — 0

examples
P oeo — eoe =010 =2
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Some examples

. Agric. Food Chem., 52 (20), 6055 -6060, 2004. 10.1021/jf049240e S0021-8561(04)09240-4
Web Release Date: September 9, 2004
Copyright © 2004 American Chemical Society

Discrimination of Olives According to Fruit Quality Using Fourier Transform Raman Spectroscopy and Pattern
Recognition Techniques

Barbara Muik, Bernhard Lendl, Antonio Molina-Diaz, Domingo Ortega-Calderon,# and Maria José Ayora-Cafada*

Department of Physical and Analytical Chemistry, University of Jaén, Paraje las Lagunillas s/n, E-23071 Jaén,
Spain; Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164,
A-1060 Wien, Austria; and CIFA Venta del Llano, IFAPA, Ctra. Bailén-Motril km 18.5, E-23620 Mengibar, Jaén,
Spain

Multiplication of large integers
The fastest known algorithms for the multiplication of large integers or polynomials are based on the discrete
Fourier transform: the sequences of digits or coefficients are interpreted as vectors whose convolution needs to

be computed; in order to do this, they are first Fourier-transformed, then multiplied component-wise, then
transformed back.
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Power Spectrum

The autocorrelation of a function iIs
Corrly)()= |7 y(1) y(t +7) dt

and the power spectrum is defined as the Fourier transform of
the autocorrelation

PS[Y1(f)= |~ Corrlyl(r)e’™* dt

For a periodic function, the correlation is often defined as the
expectation value. There is no convention on the normalization,
so be careful about the values. Best to see which frequencies
dominate a given spectrum. Here is a practical approach for a

discretely sampled function:
N-1 ik /N
C,= 2 ce & k=01,...,.N—1

J=0
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Power Spectrum

1
PO)=P(fy)="5/Cof
1 N
P = a[el +enr] k=125 1)

1
P(fc) = P(fN/z) = NzCN/z2

P(f)

Let’s try it out on our example: 025

The 4Hz frequency is picked out. N

0.1

0.05

005
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where only positive

frequencies are
considered:

k _
NA

Inverse Fourier Transform

k
2f.—  k=0]1...
ey

N | =
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Noise

We now add some noise to our spectrum (Gaussian smearing
with 6=0.5) and see what happens:

Inverse Fourier Transform

amplitude

—~ 03
1 - - —~ 15 F —~ 25 [ £
: T b e Tk L
08 [ 12 i £ 2 : 025 [
06 10 - 15F . F
£t * E E 0.2
04 - 7.5 10 L
02 [ s F . sfEoor e 015 [
N . F E » C
o[ 25 v 0 / / ~— F
r . E o 01 |
0.2 0 - \. ! S e LI +
F E . . F L
04 25 — -10 - 0.05
n r £ »
0.6 . . 5 F 15
L F E 0 Lo .
08 [ 75 ¢ 20 F
F . . E E r
1 ol b b b b b b b b 10 Coavalaoa bl 25 Coaalo o loa s -0.05 L1 L1 L1 L1 L1 L
0 01 02 03 04 05 06 07 08 09 1 0 20 40 60 0 20 40 60 0 1 2 3 4 5
t (S) ] n f (HZ)
Inverse Fourier Transform
Data sample Data sample
— 20 o~ 20 ~035 - :
g 4 < T £ f ’ T of Y
—g \a_’/ . e L r * a C
2 3F @ £ s | 03 -
o 15 — F u
£ . F
e e 025 -
, b 10
. : ..
. 1 o 02 |
1r- ¢ . S i . ® -
(o N » . L] L ° »® -
+* . . * o r
0 [ * -" . R ‘o 5 N Seans® ’° 0 i‘.o :.."‘ 2 0.15
. - o,V
. LY e - - . «*
. w L] s *° - 0.1 i
r « . . hd Cen® . ® ~
15 ’ . 0 [ e 5 .
E ro %, > r 0.05 o E— R R [
2 - L . 10 o : : F s
C L taa C L P ’y
S5 N - = » eaveen’
3 - =15
! ! ! ! ! ! Lol | | .| | -0.05 ' ' : '
g oo Lo bov e b Lo L -10 vl 20 [ | . 0 1 2 3 1 5
0 1 2 3 4 5 6 20 40 60 20 40 60
f (Hz)
t(s) n n
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Exercizes

1. Solve the % minimization problem from last lecture with
MINUIT.

2. Generate 64 data points using
f(t)=cos(m/4 +2nft) + cos(2mf,t) f1=05,f,=1 A=0.2

and fit with a discrete Fourier transform. Extract the power
spectrum.
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