
Topics covered:

● Build process and the preprocessor

● Data types

● Type casting and arrays

● Pointers and references

● Stack and Heap: Memory management

The source code in the examples relates to the GNU C++ Compiler (g++) but should work

with almost every other C++ compiler.

Contact:

C++
a short introduction by some examples

source code
1. Preprocessor ↓ text substitutions

preprocessed source code
2. Compiler ↓ machine code generation

object file
3. Linker ↓ bundles object files

and links to system libraries
executable (or shared library)

Important: Distiguish between compile-time and run-time behaviour/errors etc !!

Command line calls of the g++ compiler:
g++ -E test.cpp stops after preprecessing (console output)
g++ -c test.cpp stops after compiling (object file test.o)
g++ test.cpp stops after linking (executable file a.out or a.exe)

Build process
How the source code is translated into an executable program

Preprocessor
an example

someheader.h
#ifdef PVAR
#define PVAR_SEEN_IN_SOMEHEADER
#endif

void testfunction()
{
 cout << "Hello World";
}

#define COUTPUT(x) cout << x

dummy.h
void anothertestfunction()
{
 cout << "some dummy text";
}

#error Preprocessing stopped!

myprogram.cpp
#define PVAR 2
#include "someheader.h"

#if PVAR == 1
#include "dummy.h"
void againanothertestfunction()
{
 // do nothing
 return;
}
#endif

int main()
{

#ifdef PVAR_SEEN_IN_SOMEHEADER
 testfunction();

#endif

COUTPUT("PVAR was ");
cout << PVAR;

 return 0;
}

Preprocessor output
g++ -E myprogram.cpp

void testfunction()
{
 cout << "Hello World";
}

int main()
{
 testfunction();
 cout << "PVAR was ";
 cout << 2;
 return 0;
}

Useful for
● simple text substitutions (when it's just messy to type so much)
● general build control
● switchable debugging output

#ifdef DEBUG #ifdef DEBUG
cout << "x = " x << endl; #define DEBUGOUT(msg) cout << msg << endl
#endif #else

#define DEBUGOUT(msg)
#endif
DEBUGOUT("x = " << x);

● platform specific adjustments (some variables are automatically set by compiler)
#ifdef __CINT__ #ifdef WIN32 #ifdef LINUX
#endif #endif #endif

Do not use
● macros as function replacement

#define M2(x) if (x>0) { x=0; }
M2(5); // will produce a compiler error
#define M1(x) if ((x>1) && (x<10)) { cout << x; }
M1(x++); // if x was 5 before, it outputs 7, x is 8 afterwards
→ use so called inline functions for time critical things instead!

● preprocessor variables for contant values
#define PI 3.1415 // will work, but very bad style
const double pi=3.1415; // the C++ way to do that

Preprocessor
some remarks

● Preprocessor variables can be set via the command line compiler call i.e.
g++ -DPVAR=2 -DDEBUG test.cpp

● Preprocessor things should be written uppercase
● #include "header.h" searches in the current directory and then in standard directories
● #include <header.h> searches the file directly in the standard directories

Standard C++ skeleton

#include <iostream>
using namespace std;

int main(int argc, char *argv[]) // alternatively int main() when no args are needed
{

// your code, for example:
cout << "Number of parameters: " << argc << endl;
for (int i=0; i<argc; i++)

cout << "argv[" << i << "] = " << argv[i] << endl;

// main should always return an integer error code (0 if the program was successfull)
return 0;

}

Source files should always end with a newline without any characters in it!

Preprocessor / Standard C++ skeleton

No type: void

Logical type: bool (1 byte) can be true or false
bool b1 = true; int a=5; bool b2 = (a > 1);

Integer types:
size (usually) range unsigned range signed

char 1 byte 0..255 -128..127
short (int) 2 bytes 0..65535 -32768..32767
int 4 bytes 0..4294967295 -2147483648..2147483647
long (int) 4 bytes (32bit)

8 bytes (64bit)

0..4294967295

0..18446744073709551615

-2147483648..2147483647

-9223372036854775808 ..
9223372036854775807

Without sign declaration char is unsigned and short,int,long are signed
signed char v1; unsigned int v2; unsigned short int v3; signed int v4; int v5;
Floating point types: float (4 bytes) double (8 bytes) see lecture notes for details

With sizeof(long) you can determine the size of long in bytes at runtime!

Concerning ROOT: Use platform independent types Int_t, UInt_t, Float_t, etc. !
Look at %ROOTSYS%/include/Rtypes.h to see how that works (by preprocessor)

Basic data types in C++

Arrays: always have a fixed length

int test[100]; test[0]=10; test[99]=5; for (int i=0; i<100; i++) test[i]=i;

short myshorts[5] = { 5, 8, 34, 9, 101 };
long mylongs[] = { 4358445, 46436 };

char mytext[200]="Hello! This is a string with a maximum length of 200 characters!";
char mytext[]="Hello world";

For normal arrays (on stack) the length must be determinable at compile-time!!!
The following example works with some compilers, but is not really standard C++
int len; cout << "Enter array length: "; cin >> len;
long mylongs[len];
Use arrays on heap if the length is determinted run-time!!! (see below how that works)

Array-like structures with a variable length are provided by the STL libraries (not covered here)

Type casting: automatically done by the compiler where possible; sometimes explicitly needed
double dv = 5.3;
int a = dv; // implicit cast, a is 5 (produces a compiler warning)
int b = (int) dv; // explicit cast, b is 5 (no warning)
double c = (double)(int) dv; // cast twice, c is 5.0
double d = a; // implicit cast (no warning)

Arrays / Type casting
by examples

Pointers are unsigned long integers. The value is an adress in the main memory.
The data type behind this adress is the type of the pointer!
Define with a * after the type name i.e. double* a; double *b; (same behaviour)
Operators on/for pointers:

● &a gets a pointer to the variable a (also called reference)
● *a dereferences a pointer -> gets the value behind a
● a[x] dereferences a pointer at increased position x; a[x] is equivalant to *(a + x)
● a->v equivalant to (*a).v

An array variable without brackets is treated like a pointer to its first element:
double arr[5] = {5.1, 7.2, 9.1, 12.3, 15.4};
double* ap;
ap = arr; ap = &arr[0]; // these two statements are equivalent

cout << *ap << endl; // output: 5.1
cout << (unsigned long) ap << endl; // output: 2293552 (memory adress of arr[0])
ap = ap + 3;
cout << (unsigned long) ap << endl; // output: 2293576 (first adress + 3*sizeof(double))
cout << *ap << endl; // output: 12.3

Pointers

// define pointer to double
double* a;
double b = 5.3;
double c = 2.4;

a = &b; *a = 3.1;
a = &c; *a = 9.9;
// b is now 3.1 and c is now 9.9

// define pointer with no type
void* ptr;
int b = 5;
double c = 2.4;

ptr = &b; *(int*)ptr = 3;
ptr = &c; *(double*)ptr = 9.9;
// b is now 3 and c is now 9.9

void func1(int a) {
a = 5;

}
void func2(int* a) {

*a = 7;
}
int main() {

int x = 1;
func1(x); // leaves x unchanged
func2(&x); // the & is important here
cout << x << endl; // output: 7
return 0;

}

References
are pointers that are automatically dereferenced. Define with type& name;
They have to be initialized at the definition and the reference (where it points to) cannot be changed.
void func2(int& a) {

a = 7;
}
int main() {

int x = 1;
int& b = x; // define a reference to x
b = 3;
cout << x << endl; // output: 3
func2(x);
cout << x << endl; // output: 7
return 0;

}

Pointers / References

Warning: Pointers are very useful but often dangerous!
Use references where possible and be careful when using pointers!
The compiler can't even warn you if you write totally senseless code with pointers!

Senseless examples:
int *a;
a = 5;
int b = *a; // crash
*a = 10; // crash

char a;
char* c = &a;
c = c + 1;
*c = 10; // can crash, very dangerous

int* a; *a = 5; // can crash, very dangerous

-> always initialize every pointer - at least with 0 or NULL
int* a = NULL; // equivalant to int* a = 0;
*a = 5; // dereferencing a NULL pointer will certainly crash

Pointers / References

Stack Heap
Creation time fast a little bit slower
Create (i.e. for an int) int var1; int *var1 = new int;

"new int" creates an int on the heap and
returns a reference to it

"int *var1" is a pointer that is stored on the
stack

Delete only automatically when you leave the
definition scope

delete var1;
delete[] var2; //for arrays
(or automatically when you quit the whole
program, but neat people always clean up
before they go, so be neat!)

Maximum size limited by compiler/operation system,
typically 0.1 - 10 MB for the program and all
stack data

only limited by your physical amount of memory

Accessibility - direct access in the scope of the definition
and direct sub scopes
- everywhere by pointer as long as its not
deleted

var1 = 10;
cout << var1;

accessible only via pointers but in any scope
until you delete it

*var1 = 10;
cout << *var1;

Flexibility size of a variable should be determinable at
compile time

size of a variable can arbitrary be determined
at runtime

Common usage program variables, counters, temporary
variables etc.

large data (structures), classes and strings,
compile-time arrays

Stack and Heap

Clean heap solution for arrays with run-time length:
int len; cout << "Please enter the size of the array: "; cin >> len;
double *arr = new double[len];
arr[2] = 7.25;
delete[] arr;

Scope of stack variables:
int a = 5;
for (int i=0; i<10; i++) {

int b = a + 5;
a = a + i + b;

}
cout << a; // no error
cout << b; // error
cout << i; // error

Stack and Heap
examples

Scope of heap variables:
int* makeBigArray() {

int* arr = new int[2000];
arr[296] = 23;
return arr;

}
int main() {

int* a;
a = makeBigArray();
cout << a[296];
delete[] a;

}

Same on stack - DONT EVER DO THAT:
int* makeBigArray() {

int arr[2000];
arr[296] = 23;
return arr; // after returning arr is deleted

}
int main() {

int* a;
a = makeBigArray();
cout << a[296]; // perhaps 23, but nobody knows

}

Object on stack:
void test() {

const int n = 10;
double x[n] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
double y[n] = {1, 3, 10, 1, 3, 10, 1, 3, 10, 6};

TGraph g(n, x, y);
g.Draw("APL");
return;

}

works fine, but g is automatically deleted when test returns
-> you won't see the graph

Object on heap:
void test() {

const int n = 10;
double x[n] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
double y[n] = {1, 3, 10, 1, 3, 10, 1, 3, 10, 6};

TGraph *g = new TGraph(n, x, y);
g->Draw("APL"); // equivalant to (*g).Draw("APL");
return;

}

works fine, g also "lives" after test has returned, but you should be aware that someone has to make a
delete call for the graph at some time.

Stack and Heap
examples with ROOT objects

#include <iostream>
#include <vector>
using namespace std;

int main() {
 vector<double> x;

 x.push_back(1.695); x.push_back(33.1); x.push_back(9.5);

 cout << "Length: " << x.size() << endl;
 cout << "x[1]: " << x[1] << endl;

 x.erase(x.begin() + 1);
 x.insert(x.begin(), 23.1);
 x.insert(x.begin(), 9.81);

 cout << "Length: " << x.size() << endl;
 cout << "x[1]: " << x[1] << endl;

 sort(x.begin(), x.end());

 vector<double>::iterator i;
 for (i = x.begin(); i < x.end(); i++)
 cout << *i << endl;

 double *fx = new double[x.size()];
 uninitialized_copy(x.begin(), x.end(), fx);

 for (int j=0; j<x.size(); j++)
 cout << fx[j] << endl;

 delete[] fx;
 return 0;
}

STL - Standard Template Library
just one example

Very important topics that where not covered here:
● Classes and inheritance (essential for C++ programming)
● Strings and character handling
● Streams
● Templates
● Standard C++ libraries and especially the STL library
● Namespaces
● Exceptions
● Multi-file projects and the use of makefiles

Further reading (unordered):
● http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html
● http://www.sgi.com/tech/stl/
● http://www.cplusplus.com/doc/tutorial/
● http://de.wikibooks.org/wiki/C++-Programmierung
● http://en.wikibooks.org/wiki/Category:C++_programming_language
● http://proquest.safaribooksonline.com/browse?category=itbooks.prog.cpp

(only via LRZ proxy and VPN Client)

http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html
http://proquest.safaribooksonline.com/browse?category=itbooks.prog.cpp
http://en.wikibooks.org/wiki/Category:C++_programming_language
http://de.wikibooks.org/wiki/C++-Programmierung
http://www.cplusplus.com/doc/tutorial/
http://www.sgi.com/tech/stl/

