Numerical Integration

Numerical integration is used for definite integrals. Most techniques apply to low dimensional integration - we look at these today. Integration in many-dimensional space typically relies on Monte Carlo techniques (next semester).

We want to find a numerical approximation to

$$
\int_{a}^{b} f(x) d x \quad \frac{\left.{ }^{(}\right)\left(x_{i+1}\right)}{\left(f\left(x_{i}\right) x_{i} x_{i+1} \mathrm{~b}\right.}
$$

Newton-Cotes methods - use equidistant points:

$$
x_{i}=a+i h \quad i=0, \ldots, n \quad h=\frac{b-a}{n}
$$

Lagrange Polynomials

For $n+1$ points $\left(x_{i} y_{i}\right)$, with

$$
i=0,1, \cdots, n \quad x_{i} \neq x_{j \neq i}
$$

there is a unique interpolating polynomial of degree n with

$$
p\left(x_{i}\right)=y_{i} \quad i=0,1, \cdots, n
$$

Can construct this polynomial using the Lagrange polynomials, defined as:

$$
L_{i}(x)=\frac{\left(x-x_{0}\right) \cdots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{i}-x_{0}\right) \cdots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \cdots\left(x_{i}-x_{n}\right)}
$$

Degree n (denominator is constant), and

$$
L_{i}\left(x_{k}\right)=\delta_{i, k}
$$

Lagrange Polynomials

The Lagrange Polynomials can be used to form the interpolating polynomial:

$$
p(x)=\sum_{i=0}^{n} y_{i} L_{i}(x)=\sum_{i=0}^{n} y_{i} \prod_{k=0, k \neq i}^{n} \frac{x-x_{k}}{x_{i}-x_{k}}
$$

In our application, $y_{i}=f\left(x_{i}\right)$

Integration of the polynomial yields:
$\int_{a}^{b} p(x) d x=\sum_{i=0}^{n} f\left(x_{i}\right) \int_{a}^{b} \prod_{k=0, k \neq i}^{n} \frac{x-x_{k}}{x_{i}-x_{k}} d x=\sum_{i=0}^{n} f\left(x_{i}\right) \int_{0}^{n} \prod_{k=0, k \neq i}^{n} \frac{s-k}{i-k} h d s$
where $x=a+s h$
Note that $\int_{0_{k=0, k \neq i}^{n}}^{n} \frac{s-k}{i-k} h d s=\alpha_{i} h$
So α_{i} is just a number depending on i, n

Newton-Cotes Formulas

So, $\quad \int_{a}^{b} p(x) d x=h \sum_{i=0}^{n} f\left(x_{i}\right) \alpha_{i}$
Look at some specific examples:

$$
\begin{aligned}
& n=1 \quad p(x)=f\left(x_{0}\right) \frac{x-x_{1}}{x_{0}-x_{1}}+f\left(x_{1}\right) \frac{x-x_{0}}{x_{1}-x_{0}} \\
& \alpha_{0}=\int_{0}^{1} \prod_{k=0, k \neq i}^{1} \frac{s-k}{i-k} d s=\int_{0}^{1} \frac{s-1}{0-1} d s=-\frac{1^{2}}{2}+1=\frac{1}{2} \\
& \alpha_{1}=\int_{0}^{1} \prod_{k=0, k \neq i}^{1} \frac{s-k}{i-k} d s=\int_{0}^{1} \frac{s-0}{1-0} d s=\frac{1^{2}}{2}=\frac{1}{2} \\
& \int_{a}^{b} p(x) d x=h \sum_{i=0}^{n} f\left(x_{i}\right) \alpha_{i}=h f\left(x_{0}\right) \frac{1}{2}+h f\left(x_{1}\right) \frac{1}{2}=\frac{h}{2}\left(f\left(x_{0}\right)+f\left(x_{1}\right)\right)
\end{aligned}
$$

Trapezoidal rule

Trapezoidal Rule

Graphically:

Of course, we can apply this to many subdivisions (composite trapezoidal rule) :

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\sum_{i=0}^{m} \int_{z_{i}}^{z_{i+1}} f(z) d z \text { where } z_{0}=a, \quad z_{m+1}=b \\
& \int_{a}^{b} f(x) d x \approx h\left(\frac{f\left(x_{0}\right)}{2}+\frac{f\left(x_{1}\right)}{2}+\frac{f\left(x_{1}\right)}{2}+\frac{f\left(x_{2}\right)}{2}+\cdots+\frac{f(b-h)}{2}+\frac{f(b)}{2}\right) \\
& \int_{a}^{b} f(x) d x \approx h\left(\frac{f\left(x_{0}\right)}{2}+f\left(x_{1}\right)+\cdots+f(b-h)+\frac{f(b)}{2}\right)
\end{aligned}
$$

Error Order

To find the error order of a particular approximation, we consider a series approximation. For the numerical simulation of derivatives, we compared to a Taylor series. Here we compare to the EulerMaclaurin summation formula:
$\sum_{i=1}^{n-1} F(i)=\int_{0}^{n} F(s) d s-\frac{1}{2}[F(0)+F(n)]+\sum_{k=1}^{\infty} \frac{B_{2 k}}{(2 k)!}\left[F^{(2 k-1)}(n)-F^{(2 k-1)}(0)\right]$
where
$F^{(k)}$ is the k-th derivative of F and the $B_{2 k}$ are the Bernoulli numbers

n	$B n$
0	1
1	$-1 / 2=-0.5$
2	$1 / 6 \approx 0.1667$
4	$-1 / 30 \approx-0.0333$
6	$1 / 42 \approx 0.02381$
8	$-1 / 30 \approx-0.0333$
10	$5 / 66 \approx 0.07576$
12	$-691 / 2730 \approx-0.2531$
14	$7 / 6 \approx 1.1667$

$$
B_{n}=0 \text { for } n \geq 3 \text {, odd }
$$

Error Order

Make the transformation: $\quad x=s h+a$
$\sum_{i=1}^{n-1} f\left(x_{i}\right)=\frac{1}{h} \int_{a}^{b} f(x) d x-\frac{1}{2}[f(a)+f(b)]+\sum_{k=1}^{\infty} \frac{B_{2 k}(2 k)!}{}\left[f^{(2 k-1)}(b)-f^{(2 k-1)}(a)\right] h^{2 k-}$
or
$\int_{a}^{b} f(x) d x=h \sum_{i=1}^{n-1} f\left(x_{i}\right)+\frac{h}{2}[f(a)+f(b)]-\frac{h^{2}}{12}\left[f^{\prime}(b)-f^{\prime}(a)\right]+O\left(h^{4}\right)$
We see that the error from the trapezoidal rule is of order h^{2}.
The precision can be improved by setting h smaller and smaller but we will eventually hit rounding errors and computing time limitations. Look for methods with higher order of the error.

Simpson's Rule

$$
n=2 \quad \int_{a}^{b} p(x) d x=h \sum_{i=0}^{n} f\left(x_{i}\right) \alpha_{i}=2 h \frac{f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)}{6}
$$

Error order h^{4} (interpolating polynomial of $2^{\text {nd }}$ order)

Composite Simpson's rule:

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \approx \frac{2 h}{6}\left[\begin{array}{l}
f(a)+4 f(a+h)+f(a+2 h)+ \\
f(a+2 h)+4 f(a+3 h)+f(a+4 h)+ \\
\cdots+ \\
f(b-2 h)+4 f(b-h)+f(b)
\end{array}\right] \quad \begin{array}{l}
\text { Note: range divided } \\
\text { into an even } \\
\text { multiple of } \mathrm{h}
\end{array} \\
& =\frac{h}{3}[f(a)+4 f(a+h)+2 f(a+2 h)+4 f(a+3 h)+\cdots+4 f(b-h)+f(b)]
\end{aligned}
$$

Midpoint Rule

It is sometimes preferable to sample the function at the midpoint of the interval rather than at the ends (e.g., if the function has a singularity at the endpoint). Simplest example:

$$
\int_{a}^{b} f(x) d x \approx h f\left(\frac{a+b}{2}\right) \quad h=b-a
$$

The composite midpoint rule gives:

$$
\int_{a}^{b} f(x) d x \approx 2 h(f(a+h)+f(a+3 h)+\cdots+f(b-h))
$$

The error order is h^{2}

Extrapolation Method

Let $R_{i j}$ be our estimate of the integral when 2^{i-1} intervals are used and j is the order of the interpolating polynomial (previously n). E.g., $\mathrm{j}=1$ is Trapezoidal Rule, $\mathrm{j}=2$ is Simpson's Rule. Look at the error formula:
$\int_{a}^{b} f(x) d x=T_{S}(h)+\alpha_{2} h^{2}+\alpha_{4} h^{4}+\cdots$
where $T_{S}(h)$ is e.g. the Trapezoidal rule. Now take $h \rightarrow \frac{h}{2}$
$\int_{a}^{b} f(x) d x=T_{S}(h / 2)+\alpha_{2} h^{2} / 4+\alpha_{4} h^{4} / 16+\cdots$
SO
$\int_{a}^{b} f(x) d x-\frac{4 T_{S}(h / 2)-T_{S}(h)}{3}=-\alpha_{4} h^{4} / 4+\cdots$
i.e., can get a higher order error by combining results from different step sizes (recall extrapolation method for derivatives).

Extrapolation Method

There is a general formula for calculating the higher order terms Richardson Formula:

$$
R_{i+1, j+1}=R_{i+1, j}+\frac{R_{i+1, j}-R_{i, j}}{4^{j}-1} \quad \begin{aligned}
& \text { See Scherer lecture notes } \\
& \text { for derivation }
\end{aligned}
$$

So we can gain higher order of error at the same time as making the step size smaller (technique called Romberg integration).

So, e.g., can get up h^{6} precision by extrapolating the trapezoidal rule calculations with spacing h,h/2,h/4

Example

Let's investigate a concrete example:

$$
K=\int_{0}^{\pi / 2} \sqrt{1-k^{2} \sin ^{2} \theta} d \theta
$$

We know the exact value for some k, e.g., $k=1 \rightarrow K=1.0$

Example

Next example:
$K=\int_{0}^{2} \sqrt{4-x^{2}} d x=\pi$

Convergence much slower because of infinite slope at $x=2$

$$
\frac{d \sqrt{4-x^{2}}}{d x}=\frac{1}{2} \frac{-2 x}{\sqrt{4-x^{2}}}=\frac{-x}{\sqrt{4-x^{2}}} \xrightarrow[x \rightarrow 2]{ }-\infty
$$

Magnetic Field

Current I flowing in wire. Biot-Savart Law:

$$
\begin{gathered}
d \vec{B}=\frac{\mu_{0} I}{4 \pi} \frac{d \vec{z} \times \vec{r}}{r^{3}} \\
d \vec{z} \times \vec{r}=r d z \sin \theta \hat{y}
\end{gathered}
$$

$$
\vec{B}=B \hat{y}, \quad B=\int_{-L}^{L} \frac{\mu_{0} I}{4 \pi} \frac{r \sin \theta}{r^{3}} d z=\int_{-L}^{L} \frac{\mu_{0} I}{4 \pi} \frac{x}{\left(x^{2}+z^{2}\right)^{3 / 2}} d z
$$

Consider $\mathrm{L} \rightarrow \infty, \mathrm{x}$ small: Ampere's Law gives $B=\frac{\mu_{0} I}{2 \pi r}$ where r is the distance from the wire. Try our numerical calculations.

Magnetic Field

Note that Ampere's law applied to an infinite length wire. To reproduce the result numerically, need to have L>>r.

$$
\begin{aligned}
& r=x=1,\left(\frac{x}{\sqrt[3]{x^{2}+z^{2}}}\right)_{\min }=\left(\frac{1}{\sqrt[3]{1^{2}+L^{2}}}\right),\left(\frac{x}{\sqrt[3]{x^{2}+z^{2}}}\right)_{\max }=\left(\frac{1}{\sqrt[3]{1^{2}+0}}\right) \\
& \left.\left.\left(\frac{x}{\sqrt[3]{x^{2}+z^{2}}}\right)_{\min }^{\left(\frac{\sqrt[3]{x^{2}+z^{2}}}{}\right)}\right)_{\max }^{\sqrt[3]{1^{2}+L^{2}}}\right)
\end{aligned}
$$

for this ratio $\leq \varepsilon, \quad L>\sqrt{\varepsilon^{-2 / 3}-1} \approx \varepsilon^{-1 / 3}$
For $L=1000, \varepsilon=10^{-9}$

Magnetic Field

Take $x=1, L=1000$

Step too big

Rounding errors

Magnetic Field

Try double precision: L=10000

Double Precision

Gaussian Quadrature

We now move away from the requirement of equidistant points for the integration. General technique called Gaussian quadrature which yields polynomial accuracy of order (2n-1) using $\mathrm{n}^{\text {th }}$ order polynomials.

Consider the scalar product of two functions in the interval $[-1,1]$

$$
\langle f g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

Now consider an orthogonal set of polynomials on this interval, such that

$$
\left\langle P_{i} P_{j}\right\rangle=\delta_{i j}
$$

E.g., Legendre polynomials ($1, x, x^{2}-1 / 3, \ldots$)

Gaussian Quadrature

Assume we have a polynomial $p(x)$ of order $2 n-1$. We can interpolate this polynomial at n points x_{i} using our usual Lagrange method of order $\mathrm{n}-1$:

$$
\tilde{p}(x)=\sum_{j=1}^{n} L_{j}(x) p\left(x_{j}\right)
$$

We can rewrite $p(x)$ as

$$
p(x)=\tilde{p}(x)+\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right) q(x)
$$

where $q(x)$ is a polynomial of degree $\mathrm{n}-1$
If we pick the x_{i} as the roots of an $n^{\text {th }}$ order polynomial
from an orthogonal set (e.g., Legendre Polynomials), then

$$
\begin{aligned}
& P_{n}(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right) \\
& \int_{-1}^{1} P_{n}(x) q(x)=0 \quad \text { since } q(x)=\sum_{j=0}^{n-1} a_{j} P_{j}(x)
\end{aligned}
$$

Gaussian Quadrature

So, $\quad \int_{-1}^{1} p(x) d x=\int_{-1}^{1} \tilde{p}(x) d x=\int_{-1}^{1} \sum_{j=1}^{n} L_{j}(x) p\left(x_{j}\right) d x=\sum_{j=1}^{n} w_{j} p\left(x_{j}\right)$
where the w_{j} are determined by the choice of x_{j} which in turn come from the choice of orthogonal set of polynomials.

$$
w_{j}=\int_{-1}^{1} L_{j} d x
$$

Note what we have achieved: $2 \mathrm{n}-1$ accuracy using a polynomial of degree n by picking sampling points in special way.
Procedure (Legendre polynomials):

1. Choose which order you want to use (n)
2. Find the n roots of P_{n} (look them up in a table)
3. Find the corresponding Lagrange Polynomials
4. Calculate the weight factors
5. Evaluate the integral

Gaussian Quadrature

E.g., use Legendre polynomials, $\mathrm{n}=2$

$$
P_{2}(x)=x^{2}-\frac{1}{3} \quad \text { with roots } x_{1}=\sqrt{1 / 3} \quad x_{2}=-\sqrt{1 / 3}
$$

The Lagrange polynomials are

$$
\begin{aligned}
& L_{i}(x)=\frac{\left(x-x_{0}\right) \cdots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{i}-x_{0}\right) \cdots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \cdots\left(x_{i}-x_{n}\right)} \\
& L_{1}=\frac{\left(x-x_{2}\right)}{\left(x_{1}-x_{2}\right)}=\frac{x+\sqrt{1 / 3}}{\sqrt{1 / 3}-(-\sqrt{1 / 3})}=\frac{x+\sqrt{1 / 3}}{2 \sqrt{1 / 3}} w_{1}=\int_{-1}^{1} L_{1} d x=1 \\
& L_{2}=\frac{x-\sqrt{1 / 3}}{-2 \sqrt{1 / 3}}
\end{aligned}
$$

Note that these can be used for any integrand you want to evaluate

Gaussian Quadrature

So, this gives the 2-point rule: $\quad \int_{-1}^{1} f(x) d x \approx f(-\sqrt{1 / 3})+f(\sqrt{1 / 3})$
For different integration limits, make a change of variables:

$$
\begin{aligned}
& x=\frac{a+b}{2}+\frac{b-a}{2} u \\
& \int_{a}^{b} f(x) d x=\int_{-1}^{1} f\left(\frac{a+b}{2}+\frac{b-a}{2} u\right) \frac{b-a}{2} d u
\end{aligned}
$$

for our example

$$
\begin{aligned}
& \qquad \begin{aligned}
& \int_{a}^{b} f(x) d x \approx \frac{b-a}{2}\left[f\left(\frac{a+b}{2}-\frac{b-a}{2} \sqrt{1 / 3}\right)+f\left(\frac{a+b}{2}+\frac{b-a}{2} \sqrt{1 / 3}\right)\right] \\
& \text { e.g., } K=\int_{0}^{\pi / 2} \sqrt{1-\sin ^{2} \theta} d \theta \approx \frac{\pi / 2}{2}\left[\cos \left(\frac{\pi / 2}{2}-\frac{\pi / 2}{2} \sqrt{1 / 3}\right)+\cos \left(\frac{\pi / 2}{2}+\frac{\pi / 2}{2} \sqrt{1 / 3}\right)\right] \\
&=\frac{\pi}{4}[0.9454092+0.3258856]=0.9984726
\end{aligned}
\end{aligned}
$$

Gaussian Quadrature

Of course, can apply composite Gaussian Quadrature, or use a higher order Legendre polynomial.

n	x_{i}	w_{i}
1	0	2
2	$\pm \sqrt{ } 1 / 3$	1
3	0	$8 / 9$
	$\pm \sqrt{ } 3 / 5$	$5 / 9$
4	± 0.339981	0.652145
	± 0.861136	0.347855
	0	0.568889
5	± 0.538569	0.478629
	± 0.906180	0.236927

Gaussian Quadrature

One can also choose different sets of orthogonal polynomials by breaking up the integral as follows $\int_{a}^{b} w(x) f(x) d x$

Interval	$w(x)$	Orthogonal Polynomials
$[-1,1]$	1	Legendre
$(-1,1)$	$(1-x)^{\alpha}(1-x)^{\beta} \alpha, \beta>-1$	Jacobi
$(-1,1)$	$1 / \sqrt{ }\left(1-x^{2}\right)$	Chebyshev (first kind)
$[-1,1]$	$\sqrt{ }\left(1-x^{2}\right)$	Chebyshev (second kind)
$[0, \infty)$	e^{-x}	Laguerre

Orthogonality: $\quad \int_{a}^{b} w(x) P_{N}(x) P_{M}(x) d x=0 \quad M \neq N$
The weights are given by $w_{i}=\int_{a}^{b} w(x) L_{i}(x) d x$

Field due to Current Loop

Example: the magnetic field due to a current loop:

Magnetic field can be calculated analytically for points along the axis, but not for other points. Magnetic field will have components in all directions. Need to calculate them one at a time.

Field due to a Current Loop

Calculation of the magnetic field due to a current loop at a point P off the axis of the loop. Following integrals appear:

$$
I=\int_{-1}^{1} \frac{x}{(a-x)^{3 / 2} \sqrt{1-x^{2}}} d x \quad \text { take } a=\frac{5}{4} \quad \begin{aligned}
& \text { Note singularity } \\
& \text { at endpoints ! }
\end{aligned}
$$

Note that $\frac{1}{\sqrt{1-x^{2}}}$ already appears in integral, so we use this as the weight function and use the roots of the Chebyshev polynomials of the first kind. For $\mathrm{n}=4$, these are

$$
x_{1}=\cos \pi / 8, x_{2}=\cos 3 \pi / 8, x_{3}=-\cos 3 \pi / 8, x_{4}=-\cos \pi / 8
$$

giving

$$
w_{1}=w_{2}=w_{3}=w_{4}=\pi / 4
$$

so that

$$
I \approx w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)+w_{3} f\left(x_{3}\right)+w_{4} f\left(x_{4}\right)=5.02
$$

where

$$
f(x)=\frac{x}{(a-x)^{3 / 2}} \quad \text { Correct answer } \approx 5.33
$$

Exercizes

1. Compare the Trapezoidal rule, Simpson's rule, the Romberg extrapolation method, and Gaussian quadrature with Legendre Polynomials for the following integral (try different values of θ_{m}) for different step sizes:

$$
\sqrt{8} \int_{0}^{\theta_{m}} \frac{d \theta}{\sqrt{\cos \theta-\cos \theta_{m}}}
$$

