Root Finding and Optimization

Root finding, solving equations, and optimization are very closely related subjects, which occur often in practical applications.

$$
\begin{aligned}
& \text { Root finding: } \quad f(x)=0 \quad \text { Solve for } x \\
& \text { Equation Solving }: f(x)=g(x), \quad \text { or } f(x)-g(x)=0 \\
& \text { Optimization: } \quad \frac{d g(x)}{d x}=0 \quad f(x)=\frac{d g(x)}{d x}
\end{aligned}
$$

Start with one equation in one variable. Different methods have different strengths/weaknesses. However, all methods require a good starting value and some bounds on the possible values of the root(s).

Root Finding

Bisection

Need to find an interval where $f(x)$ changes sign (implies a zero crossing). If no such interval, no root. Then, divide interval into

$$
\left[a_{0}, a_{0}+\frac{b_{0}-a_{0}}{2}\right]\left[a_{0}+\frac{b_{0}-a_{0}}{2}, b_{0}\right]
$$

Find interval where $f(x)$ changes sign, and repeat until interval is small enough.

Root Finding

We will try this method on one of our old examples - planetary motion. Recall, for two masses $\mathrm{m}_{1}, \mathrm{~m}_{2}$, we found:

$$
\frac{1}{r}=\left(\frac{\mu G M m}{L^{2}}\right)\left[1-e \cos \left(\theta+\theta_{0}\right)\right] \quad r=\frac{a\left(1-e^{2}\right)}{1-e \cos \left(\theta+\theta_{0}\right)} \text { where } \vec{r}=\vec{r}_{1}-\vec{r}_{2}
$$

and Reduced mass: $\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$

$$
a=\frac{r_{\min }+r_{\max }}{2}=\left(\frac{L^{2}}{\mu G M m}\right)\left(\frac{1}{1-e^{2}}\right)
$$

$$
b=\left(\frac{L^{2}}{\mu G M m}\right)\left(\frac{1}{\sqrt{1-e^{2}}}\right)
$$

2-body motion

Here, we are interested in plotting the orbit of individual masses as a function of time - i.e., taking equal time steps. The relationship between the angle and the time is:
$t=\frac{T}{2 \pi}(\xi-e \sin \xi) \quad$ where ξ is the angle from the center of the ellipse
The position of the individual masses is given by

$$
\begin{aligned}
& x_{1}=\frac{m_{2}}{m_{1}+m_{2}} a(\cos \xi-e) \quad x_{2}=-\frac{m_{1}}{m_{1}+m_{2}} a(\cos \xi-e) \\
& y_{1}=\frac{m_{2}}{m_{1}+m_{2}} a \sqrt{1-e^{2}} \sin \xi \quad y_{2}=-\frac{m_{1}}{m_{1}+m_{2}} a \sqrt{1-e^{2}} \sin \xi
\end{aligned}
$$

We first have to solve for $\xi(\mathrm{t})$, then for x, y. To solve for $\xi(\mathrm{t})$, need to find the root of
for a given t.

$$
(\xi-e \sin \xi)-\frac{2 \pi t}{T}=0
$$

$$
(\xi-e \sin \xi)-\frac{2 \pi t}{T}=0
$$

2-body motion

Need a starting interval for the bisection algorithm: We note that the maximum and minimum of the $\sin (\xi)$ term is $1,-1$. So we can take as the starting range for ξ

$$
\xi_{a}=\frac{2 \pi t}{T}-e \quad \xi_{b}=\frac{2 \pi t}{T}+e
$$

2-body motion

Let's take some random values for the parameters:

$\mathrm{T}=1, \mathrm{a}=1, \mathrm{e}=0.6, \mathrm{~m}_{2}=4 \mathrm{~m}_{1}$

accuracy=1.D-6

* Define range in which we search

```
angle1=2*3.1415926*t-e
```

angle2=angle1+2.*e
try1=tfunc(e,period,t,angle1)
try2=tfunc(e,period,t,angle2)
If (try1*try2.gt.0) then
print *,' Cannot find root - bad start parameters'
return

* Now update until within accuracy
1 continue
step=angle2-angle1
angle2=angle1+step/2.
try2=tfunc(e,period,t,angle2)
If (try1*try2.It.0.) goto 2 (root in this interval)
If (try1.eq.0.) then angle2=angle1+2.*e try1=tfunc(e,period,t,angle1)
try2=tfunc(e,period,t,angle2)
print *,' Cannot find root - bad start parameters' return

```
    Endif
```

* Now update until within accuracy

1 continue
step=angle2-angle1
angle2=angle1+step/2.
try2=tfunc(e,period,t,angle2)
If (try1*try2.It.0.) goto 2 (root in this interval)
If (try1.eq.0.) then
angle=angle1
angle=angle1
return
return
Elseif (try2.eq.0.) then
Elseif (try2.eq.0.) then
angle=angle2
angle=angle2
return
return
Endif
Endif
(check for exact landing)
tfunc $=(\xi-e \sin \xi)-\frac{2 \pi t}{T}$
angle1=angle2
try1=try2
angle2=angle2+step/2.
try2=tfunc(e,period,t,angle2)
If (try1*try2.lt.0.) goto 2
If (try1.eq.0.) then
angle=angle1
return
Elseif (try2.eq.0.) then
angle=angle2
return
Endif
2 continue
If ((angle2-angle1).gt.accuracy) goto 1
angle=angle1+(angle2-angle1)/2.

Note: accuracy $\propto 2^{-(\# \text { iterations }) .}$ For 10^{-6}, need 21 iterations

2-body motion

Regula Falsi

Similar to bisection, but use linear interpolation to speed up the convergence. Start with the interval $\left[x_{0}, a_{0}\right]$ with function values $f\left(x_{0}\right), f\left(a_{0}\right)$ such that $f\left(x_{0}\right) f\left(a_{0}\right)<0$. Use linear interpolation to guess the zero crossing.
$p(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) \frac{f\left(a_{0}\right)-f\left(x_{0}\right)}{a_{0}-x_{0}} \quad p(x)=0$ gives $\xi_{1}=\frac{a_{0} f\left(x_{0}\right)-x_{0} f\left(a_{0}\right)}{f\left(x_{0}\right)-f\left(a_{0}\right)}$

Regula Falsi

Now calculate $f\left(\xi_{1}\right)$
$\begin{array}{llll}\text { If } & f\left(x_{0}\right) f\left(\xi_{1}\right)<0 & \text { choose new interval }\left[x_{0}, \xi_{1}\right] & \text { Iterate until } \\ \text { else } & f\left(x_{0}\right) f\left(\xi_{1}\right)>0 & \text { choose new interval }\left[\xi_{1}, a_{0}\right] & \text { interval } \\ \text { sufficiently small }\end{array}$
With our previous example (2-body motion), most of the time we are faster at converging that the bisection method, but we find that we sometimes need many iterations to reach the accuracy of 10^{-6}.

Regula Falsi

So we add the extra condition that the interval has to shrink by at least the level of accuracy we are trying to reach. The logic is:
If $\left|a_{0}-x_{0}\right|<$ accuracy, Converged
If $\left|\xi_{1}-x_{0}\right|<$ accuracy $/ 2, \xi_{1}=x_{0}+$ accuracy $/ 2$
If $\xi_{1}-a_{0} \mid<$ accuracy $/ 2, \quad \xi_{1}=a_{0}-$ accuracy $/ 2$
Then continue with the usual
$f\left(x_{0}\right) f\left(\xi_{1}\right)<0 \quad$ choose new interval $\left[x_{0}, \xi_{1}\right]$.
$f\left(x_{0}\right) f\left(\xi_{1}\right)>0 \quad$ choose new interval $\left[\xi_{1}, a_{0}\right]$

Newton-Raphson Method

Here we use the slope (or also $2^{\text {nd }}$ derivative) at a guess position to extrapolate to the zero crossing. This method is the most powerful of the ones we consider today, since we can easily generalize to many parameters and many equations. However, it also has its drawbacks as we will see.

What if this is our guess ?

Newton-Raphson Method

The algorithm is:

$$
x_{i+1}=x_{i}-\frac{f(x)}{f^{\prime}(x)}
$$

$1^{\text {st }}$ order

* make a starting guess for the angle
angle=2.*3.1415926*t
try=tfunc(e,period,t,angle)
* Now update until angular change within accuracy

Do Itry=1,40
slope=tfuncp(e,period,t,angle)
angle1=angle-try/slope
try1=tfunc(e,period,t,angle1)
If (abs(angle1-angle).It.accuracy) goto 1
angle=angle1
try=try1
Enddo
1 continue
Analytic derivative needed for NR method

$$
\begin{aligned}
& (\xi-e \sin \xi)-\frac{2 \pi t}{T}=t f u n c(e, \text { period }, t, \text { angle }) \\
& (1-e \cos \xi)=t f u n c p(e, \text { period }, t, \text { angle })
\end{aligned}
$$

Newton-Raphson Method

This is the fastest of the methods we have tried so far.

Note: if no analytic derivatives available, then calculate them numerically: secant method

Several Roots

Suppose we have a function which as several roots; e.g. the function we found a couple lectures ago when dealing with eigenvalues (principal axis problem):

$$
0=\left[-\kappa^{3}+8 \kappa^{2}\left(a^{2}+b^{2}\right)-\kappa\left(16 a^{4}+39 a^{2} b^{2}+16 b^{4}\right)+28 a^{2} b^{2}\left(a^{2}+b^{2}\right)\right]
$$

It is important to analyze the problem and set the bounds correctly. For the NR method, if you are not sure where the root is, then need to give several different starting values and see what happreens ${ }_{20067}$

Several variable

The Newton-Raphson method is easily generalized to several functions of several variables:

$$
f(x)=\left(\begin{array}{c}
f_{1}\left(x_{1}, \cdots, x_{n}\right) \\
\vdots \\
f_{n}\left(x_{1}, \cdots, x_{n}\right)
\end{array}\right)=0
$$

We form the derivative matrix:

$$
D f=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right)
$$

If the matrix is not singular, we solve the SLE:

$$
0=f\left(\vec{x}^{(1)}\right)+D f\left(\vec{x}^{(0)}\right)\left(\vec{x}^{(1)}-\vec{x}^{(0)}\right)
$$

The iteration is $\quad \vec{x}^{(r+1)}=\vec{x}^{(r)}-\left(D f\left(\vec{x}^{(r)}\right)\right)^{-1} f\left(\vec{x}^{(r)}\right)$

Optimization

We now move to the closely related problem of optimization (finding the zeroes of a derivative). This is a very widespread problem in physics (e.g., finding the minimum χ^{2}, the maximum likelihood, the lowest energy state, ...). Instead of looking for zeroes of a function, we look for extrema.

Finding global extrema is a very important and very difficult problem, particularly in the case of several variables. Many techniques have been invented, and we look at a few here. The most powerful techniques (using Monte Carlo methods) will be reserved for next semester.

Here, look for the minimum of $h(\vec{x})$. For a maximum, consider the minimum of $-h(\vec{x})$. We assume the function is at least twice differentiable.

Optimization

First and second derivatives:

$$
\begin{aligned}
& \vec{g}^{t}(\vec{x})=\left(\frac{\partial h}{\partial x_{1}}, \cdots, \frac{\partial h}{\partial x_{n}}\right) \quad \text { a vector } \\
& \mathrm{H}(\vec{x})=\left(\begin{array}{ccc}
\frac{\partial^{2} h}{\partial x_{1} \partial x_{1}} & \cdots & \frac{\partial^{2} h}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} h}{\partial x_{n} \partial x_{1}} & & \frac{\partial^{2} h}{\partial x_{n} \partial x_{n}}
\end{array}\right)
\end{aligned}
$$

the Hessian matrix

General technique:

1. Start with initial guess $\vec{x}^{(0)}$
2. Determine a direction, \vec{s}, and a step size λ
3. Iterate \vec{x} until $\left|\vec{g}^{t}\right|<\varepsilon$, or cannot find smaller $h \quad \vec{x}^{(r+1)}=\vec{x}^{(r)}+\lambda_{r} \vec{s}_{r}$

Steepest Descent

Reasonable try: steepest descent

$$
\vec{s}_{r}=-\vec{g}_{r} \quad \text { step length from } 0=\frac{\partial h\left(\vec{x}_{r}-\lambda \vec{g}_{r}\right)}{\partial \lambda}
$$

Note that consecutive steps are in orthogonal directions.
As an example, we will come back to the data smoothing example from Lecture 3:

$$
\chi^{2}=\sum_{i=0}^{n} \frac{\left(y_{i}-f\left(x_{i} ; \vec{\lambda}\right)\right)^{2}}{w_{i}^{2}}
$$

$\vec{\lambda}$ are the parameters of the function to be fit

$$
y_{i} \text { are the measured points at values } x_{i}
$$

$$
w_{i} \text { is the weight given to point } i
$$

In our example: $\quad f(x ; A, \vartheta)=A \cos (x+\vartheta)$

$$
\text { and } \quad w_{i}=1 \quad \forall i
$$

we want to minimize χ^{2} as a function of A and φ

Steepest Descent

x	y
0.	0.
1.26	0.95
2.51	0.59
3.77	-0.59
5.03	-0.95
6.28	0.
7.54	0.95
8.80	0.59

$$
\chi^{2}=\sum_{i=0}^{n} \frac{\left(y_{i}-f\left(x_{i} ; \vec{\lambda}\right)\right)^{2}}{w_{i}^{2}}
$$

$$
h(A, \vartheta)=\chi^{2}=\sum_{i=1}^{8}\left(y_{i}-A \cos \left(x_{i}+\vartheta\right)\right)^{2}
$$

Steepest Descent

To use our method, need to have the derivatives:

$$
\vec{g}(A, \vartheta)=\binom{\sum_{i=1}^{8} 2\left(y_{i}-A \cos \left(x_{i}+\vartheta\right)\right)\left(-\cos \left(x_{i}+\vartheta\right)\right)}{\sum_{i=1}^{8} 2\left(y_{i}-A \cos \left(x_{i}+\vartheta\right)\right)\left(A \sin \left(x_{i}+\vartheta\right)\right)}
$$

recall step length from $0=\frac{d h\left(\vec{x}_{r}-\lambda \vec{g}_{r}\right)}{d \lambda_{r}}=\frac{d}{d \lambda_{r}} h\left(\vec{x}_{r+1}\right)$
$\frac{d}{d \lambda_{r}} h\left(\vec{x}_{r+1}\right)=\nabla h\left(\vec{x}_{r+1}\right)^{T} \cdot \frac{d}{d \lambda_{r}} \vec{x}_{r+1}=-\nabla h\left(\vec{x}_{r+1}\right)^{T} \vec{g}_{r}$
Setting to zero we see that the step length is chosen so as to make the next step orthogonal. We proceed in a zig-zag pattern.

Steepest Descent

* Starting guesses for parameters

Determining the step size through the orthogonality is often difficult. Easier to do it by trial and error:

A=0.5
phase $=1$.
step $=1$.

* Evaluate derivatives of function
gA=dchisqdA(A,phase)
gp=dchisqdp(A,phase)
$h=c h i s q(A, p h a s e)$
ltry=0
1 continue
Itry=Itry+1
* update parameters for given step size

A1=A-step*gA
phase1=phase-step*gp

* reevaluate the chisquared
h1=chisq(A1,phase1)
* change step size if chi squared increased If (h1.gt.h) then
step=step/2.
goto 1
Endif
* Chi squared decreased, keep this update $\mathrm{A}=\mathrm{A} 1$
phase=phase1
$\mathrm{gA}=\mathrm{dchisqdA}(\mathrm{A}$, phase)
$\mathrm{gp}=\mathrm{dchisqdp}(\mathrm{A}$, phase)

Steepest Descent

Other Techniques

- Conjugate Gradient
- Newton-Raphson
- Simulated annealing (Metropolis)
- Constrained optimization

Discuss briefly next time

You want to learn how to make these nice pictures ? Attend today's recitation. Special presentation from Fred on GNU.

Exercizes

1. Write a code for the 2-body motion studied in the lecture, but using numerically calculated derivatives (secant method). Compare the speed of convergence to that found for the NR method.
2. Code the χ^{2} minimization problem. Find suitable starting conditions so that the second minimum is reached. Display graphically.
