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Other Optimization Techniques

Conjugate Gradient

Similar to steepest descent, but slightly different way of choosing

direction of next step:
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Newton-Raphson

Assume the function that we want to minimize is twice

differentiable.  Then, a Taylor expansion gives
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Newton-Raphson

  

 
x r +1 =

 
x r H(

 
x r )

1  
g (

 
x r )

i.e., the search direction is   

 
s = H(

 
x r ) 1  

g (
 

x r )      and   =1

This converges quickly  (if you start with a good guess), but the

penalty is that the Hessian needs to be calculated (usually

numerically)

Again, convergence is when     is sufficiently small   
 

s 

How would we calculate the Hessian numerically ? Use Lagrange

polynomial in several dimensions and work it out
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Bounded Regions

The standard tool for minimization in particle physics is the

MINUIT program (CERN library).  It has also made its way well

outside the particle physics community.

Author: Fred James

Here is how MINUIT handles bounded search regions - it

transforms the parameter to be optimized as follows:

  = arcsin 2
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2
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 is the exernal (user) parameter

   is the internal parameter

MINUIT is available within PAW, ROOT …
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MINUIT

MINUIT uses a (variable metric) conjugate gradient search

algorithm (along with others).  Basic idea:

• assume that the function to minimize can be approximated by a

quadratic form near the minimum

• build up iteratively an approximation for the inverse of the

Hessian matrix.  Recall

the approximation for the Hessian is updated as follows:
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Fourier Transforms

Fourier transforms are very important

• as a way of summarizing the data with a few parameters

• because the transform of the data is itself very interesting (e.g.,
power spectrum, momentum coordinate space

representation,…)

H( f ) = h(t) e2 ift dt            H( f ) frequency domain representation

h(t) = H( f ) e 2 ift dt           h(t) time domain representation

Warning: there is no unanimity on 2  factors in front of the

integral.  Often the angular frequency is used = 2 f

H( ) = h(t) ei t dt h(t) =
1
2

H( ) e i t d
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Fourier Transform

Fourier Transform is a linear operation:

• transform of the sum of two functions is the sum of the

transforms

• the transform of a constant times a function is constant times the

transform

h(t) real                   H( f ) = H( f )[ ]
*

h(t) imaginary         H( f ) = H( f )[ ]
*

h(t) even                  H( f ) = H( f )

h(t) odd                   H( f ) = H( f )

h(t) real,even           H( f ) real, even

h(t) real,odd            H( f ) imaginary, odd

h(t) imaginary,even    H( f ) imaginary, even

h(t) imaginary,odd      H( f ) real, odd
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Fourier Transform

Further properties: h(at)
1
a
H

f

a
 

 

 

 

1
b
h
t

b
 

 

 

 
H bf( )

h(t t0) H f( )e2 ift
0

h(t)e 2 if
0
t H( f f0)

We are typically interested in the Fourier analysis of a discretely

sampled data set.  Define the time step (taken to be constant

here) as .  The sampling rate (frequency) is 1/ .  Define the

samples as

  hn = h(n ) n = , 3, 2, 1,0,1,2,3,
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Nyquist frequency

fc
1
2

Nyquist frequency

This is the highest frequency which can be resolved with a

sampling frequency f=1/ .  If a continuous function h(t) is limited

in frequency components to frequencies less than fc, then h(t) is

completely determined by its samples hn. It can then be written

as follows:

h(t) = hn
sin 2 fc (t n )[ ]

(t n )n=

However, if there are frequency components which are higher

than fc, then they will be spuriously moved in the range f<fc
(aliasing).
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Example

Data Fit Aliasing

Conditions are:

Sine wave with f=4 Hz, phase offset =0.1   i.e., 

h(t) = sin( + 2 ft) = sin(0.1+ 8 t)

10 Hz sampling 5 Hz sampling
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Example

H( f ) = sin(0.1+ 8 t)e2 iftdt

= sin(0.1)cos(8 t)e2 iftdt + cos(0.1)sin(8 t)e2 iftdt

= sin(0.1)
e8 it

+ e 8 it

2
e2 iftdt + cos(0.1)

e8 it e 8 it

2
e2 iftdt

Recall the relation:

e2 ifx df = (x)   where (x) is the Dirac Delta function

so we have

H( f ) = sin(0.1)
e8 it

+ e 8 it

2
e2 iftdt + cos(0.1)

e8 it e 8 it

2
e2 iftdt

=
sin(0.1)
2

e2 it( f +4)
+ e2 it( f 4 )dt +

cos(0.1)
2

e2 it( f +4 ) e2 it( f 4)dt

=
sin(0.1)
2

( f + 4) + ( f 4)[ ] +
cos(0.1)
2

( f + 4) ( f 4)[ ]
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Discrete Fourier Transform

Suppose we have N consecutive sampled points

  hk h(tk ), tk k , k = 0,1,2, ,N 1

H( fn ) = h(t)e2 if
n
tdt hke

2 if
n
t
k

k= 0

N 1
= hke

2 if
n
k

k= 0

N 1
= hke

2 ikn /N

k= 0

N 1

Hn hke
2 ikn /N

k= 0

N 1
     

We can extract the amplitude for N frequency components since

we have N data points.  Define the frequency components as

fn
n

N

1 
 

 

 
n =

N

2
,...,

N

2
       (take N even)

Note: there are N+1 frequencies, but we will find that the two at

the ends are equal, so only N independent.  Negative frequencies

allows us to include sine and cosine terms.  So

Discrete Fourier Transform
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Discrete Fourier Transform

The discrete fourier transform does not depend on any

dimensional parameters.

Note

In particular

We can therefore rewrite the sum as follows

H n = HN n e2 ik(N n ) /N
= e2 ike 2 ikn /N

= e 2 ikn /N[ ]

  

Hn hke
2 ikn /N n = 0, ,N 1

k= 0

N 1
     

H N / 2 = HN / 2

Discrete inverse Fourier transform

  

hk =
1
N

Hne
2 ikn /N k = 0, ,N 1

n= 0

N 1
     



Winter Semester 2006/7 Computational Physics I Lecture 12   14

Discrete Fourier Transform

*

* Get the discrete Fourier components

*

      Do n=0,63

         Hn(n,1)=0.D0

         Hn(n,2)=0.D0

         Do k=0,63

            Hn(n,1)=Hn(n,1)

     &                    +amplitude(k,1)*dcos(twopi*k*n/64.)

     &                     -amplitude(k,2)*dsin(twopi*k*n/64.)

            Hn(n,2)=Hn(n,2)

     &                     +amplitude(k,1)*dsin(twopi*k*n/64.)

     &                     +amplitude(k,2)*dcos(twopi*k*n/64.)

         Enddo

         Write (11,*) N,Hn(N,1),Hn(N,2)

      Enddo

amplitude(k,1) real components

amplitude(k,2) imaginary components
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Discrete Fourier Transform

Let’s try it out on our sine wave data:

Recall, signal f=4 Hz

Here’s the result (64 points):

Large components are:

f25 =
25

64 0.1
= 3.9, f26 =

26
64 0.1

= 4.06

f38 = f64 26 = f 26 f39 = f64 25 = f 25

cos and sin needed because of

phase offset.
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Discrete Fourier Transform

Here’s the inverse transform
*

* Now we try the inverse transform

*

      Do n=0,63

         amplitude(n,1)=0.D0

         amplitude(n,2)=0.D0

         Do k=0,63

            amplitude(n,1)=amplitude(n,1)

     &                            +Hn(k,1)*dcos(twopi*k*n/64.)

     &                            +Hn(k,2)*dsin(twopi*k*n/64.)

            amplitude(n,2)=amplitude(n,2)

     &                             -Hn(k,1)*dsin(twopi*k*n/64.)

     &                            +Hn(k,2)*dcos(twopi*k*n/64.)

         Enddo

         Write (12,*) N,amplitude(n,1)/64.,amplitude(n,2)/64.

      Enddo

*
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Fast Fourier Transform

The discrete Fourier transforms as we described it requires a sum

over N terms for each of the N components.  I.e., the number of

operations scales as N2.  A large part of the success of Fourier

transforms for analysis of electronic signals, optical images, x-ray

tomography,…, results from the fact that a numerical algorithm

was found which requires of order Nlog2N operations - the so-

called Fast Fourier Transform (FFT).  Here is how it works:

Fk = e2 ijk /N f j
j= 0

N 1
= e2 ik(2 j ) /N f2 j

j= 0

N / 2 1
+ e2 ik(2 j+1) /N f2 j+1

j= 0

N / 2 1

= e2 ikj /(N / 2) f2 j
j= 0

N / 2 1
+W k e2 ikj /(N / 2) f2 j+1

j= 0

N / 2 1

= Fk
e

+W kFk
o           where  W e2 i /N

What is won ?  The sums in the individual terms in the last line

only have 1/2 as many terms, and the same factor appears
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Fast Fourier Transform

To see how this works in detail, we take an explicit example of

having 8 data points (taking a power of 2 is important !  If you don’t

have enough data, pad with zeroes).
Fk = Fk

e
+W kFk

o           

where  W e2 i /N , Fk
e W 2kj f2 j

j= 0

3
, Fk

o W 2kj f2 j+1
j= 0

3

Now use a binary representation for the index k=4k2+2k1+k0

where the ki’s are 0,1.  Then,

W 2kj
= e2 i / 8( )

2(4k
2

+2k
1

+ k
0
) j

= e2 i(k
2

+ k
1
/ 2+ k

0
/ 4 )

= e2 i(k
1
/ 2+ k

0
/ 4 )

= W 2 j(2k
1

+ k
0
)

i.e., the k2 bit is irrelevant.  So,

Fk = F(k
1
,k

0
)

e
+W kF(k

1
,k

0
)

o      

F(k
1
,k

0
)

e W 2 j(2k
1

+ k
0
) f2 j

j= 0

3
F(k

1
,k

0
)

o W 2 j(2k
1

+ k
0
) f2 j+1

j= 0

3
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Fast Fourier Transform

Let’s try again:

Fk
e

= W 2 j(2k
1

+ k
0
) f2 j

j=0

3
= W 2(2 j )(2k

1
+ k

0
) f2(2 j ) +

j=0

1
W 2(2 j+1)(2k

1
+ k

0
) f2(2 j+1)

j=0

1

= W 2(2 j )(2k
1

+ k
0
) f2(2 j ) +

j=0

1
W 2(2k

1
+ k

0
) W 2(2 j )(2k

1
+ k

0
) f2(2 j+1)

j=0

1

Fk
e

= Fk
ee

+W 2(2k
1

+ k
0
)Fk

eo

W 4 j(2k
1

+ k
0
)

= e2 i / 8( )
(8k

1
+4k

0
) j

= W 2 jk
0

and Fk
o

= Fk
oe

+W 2(2k
1

+ k
0
)Fk

oo

Can perform one more step:

Fk
ee

= F eee
+W 4k

0F eeo F eee
= f0 F eeo

= f4

The sums have disappeared !
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Fast Fourier Transform

Fk
ee

= F eee
+W 4k

0F eeo
= f0 +W 4k

0 f4

Fk
eo

= F eoe
+W 4k

0F eoo
= f2 +W 4k

0 f6

Fk
oe

= Foee
+W 4k

0Foeo
= f1 +W 4k

0 f5

Fk
oo

= Fooe
+W 4k

0Fooo
= f3 +W 4k

0 f7

The final pieces are:

Note k0=0,1

So, need 8 multiplications

and 8 additions for this

step

Then, Fk
e

= F ee
+W 2(2k

1
+ k

0
)F eo

Fk
o

= Foe
+W 2(2k

1
+ k

0
)Foo

Here k0=0,1  k1=0,1

So, again 8 multiplications

and 8 additions for this

step

Finally Fk = F e
+W kF o

again 8 multiplications and

8 additions for this step
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Fast Fourier Transform

So we need 2N operations per level, and there are log2N levels.

The scaling of the computational time is therefore Nlog2N rather

than N2.

E.g., N=1000 Nlog2N 1000*10=104  N2=106

How to implement in practice.  Note that the trick is to find out

which value of n corresponds to which pattern of e,o in

F eoeooeoe...
= fn

Answer: reverse pattern of e,o.  Assign e=0, o=1, and the binary

value gives n.

eee eee 000 0

oeo eoe 010 2
examples
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Some examples

. Agric. Food Chem., 52 (20), 6055 -6060, 2004. 10.1021/jf049240e S0021-8561(04)09240-4

Web Release Date: September 9, 2004

Copyright © 2004 American Chemical Society

Discrimination of Olives According to Fruit Quality Using Fourier Transform Raman Spectroscopy and Pattern

Recognition Techniques

Barbara Muik, Bernhard Lendl, Antonio Molina-Díaz, Domingo Ortega-Calderón,# and María José Ayora-Cañada*

Department of Physical and Analytical Chemistry, University of Jaén, Paraje las Lagunillas s/n, E-23071 Jaén,

Spain; Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164,

A-1060 Wien, Austria; and CIFA Venta del Llano, IFAPA, Ctra. Bailén-Motril km 18.5, E-23620 Mengíbar, Jaén,

Spain

Multiplication of large integers

The fastest known algorithms for the multiplication of large integers or polynomials are based on the discrete

Fourier transform: the sequences of digits or coefficients are interpreted as vectors whose convolution needs to

be computed; in order to do this, they are first Fourier-transformed, then multiplied component-wise, then

transformed back.

…
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Power Spectrum

Corr[y]( ) = y(t)*y(t + ) dt

The autocorrelation of a function is

and the power spectrum is defined as the Fourier transform of

the autocorrelation

PS[y]( f ) = Corr[y]( )e2 if d

For a periodic function, the correlation is often defined as the

expectation value.  There is no convention on the normalization,

so be careful about the values.  Best to see which frequencies

dominate a given spectrum.  Here is a practical approach for a

discretely sampled function:

  

Ck = c je
2 ijk /N

j=0

N 1
k = 0,1,…,N 1
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Power Spectrum

  

P(0) = P( f0) =
1

N 2 C0
2

P( fk ) =
1

N 2 Ck
2

+ CN k
2[ ] k = 1,2,…,

N

2
1 

 

 

 

P( fc ) = P( fN / 2) =
1

N 2 CN / 2
2

where only positive

frequencies are

considered:

  
fk

k

N
= 2 fc

k

N
k = 0,1,…,

N

2

Let’s try it out on our example:

The 4Hz frequency is picked out.
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Noise

We now add some noise to our spectrum (Gaussian smearing
with =0.5) and see what happens:



Winter Semester 2006/7 Computational Physics I Lecture 12   26

Exercizes

1. Solve the 2 minimization problem from last lecture with

MINUIT.

2. Generate 64 data points using

and fit with a discrete Fourier transform.  Extract the power

spectrum.

f (t) = cos( /4 + 2 f1t) + cos(2 f2t) f1 = 0.5, f2 = 1 = 0.2


