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Waves and Music
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Waves on a string
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Waves on a string

Treat x,t as discrete variables: x = i x t = n t

Then using our well known approximation:

y(i,n +1) 2y(i,n) + y(i,n 1)

( t)2
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Assuming we know the position of the string at time n-1,n, then

we can calculate at time n+1.  Rearranging:

y(i,n +1) = 2[1 r2]y(i,n) y(i,n 1) + r2[y(i +1,n) + y(i 1,n)]

where

r
c t

x
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Waves on a string

How to treat the ends of the string ? Different possibilities - start

with ends of string fixed:

y(0,n) = y(M,n) = 0 n      M +1 grid points

We are not allowed to modify these endpoints.

Example: start with a Gaussian pulse at the center of the string.

Take

x = 0.01 M = 400 t = 0.01 c = 1

This yields   r = 1,   and the string length is 4 (somethings)

See ‘movie’



Winter Semester 2006/7 Computational Physics I Lecture 13   5

Waves on a string

The simulation looks quite accurate. How accurate is it ? Difficulty
here is that there are two types of steps, t, x.  We spefically

chose the values so that r=1.  Why ?

The information from our approximation only moves one grid point

at a time (information from i shared with i-1,i+1).  If the speed of

the wave is great than this, then the algorithm cannot keep up and

the result is a diverging series.

Let’s look in more detail - von Neumann analysis and Courant

condition



Winter Semester 2006/7 Computational Physics I Lecture 13   6

Partial Differential Equations

General Classes:

• hyperbolic, e.g., wave equation

• Parabolic, e.g., diffusion equation

• elliptic, e.g., Poisson equation
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Boundary value problems: wave & diffusion equation need

information on y at some t, then can propagate.  Poisson equation

needs information on a spatial boundary, and static slotuion for

interior points determined.
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Partial Differential Equations

We have seen examples of initial and boundary value problems.

The boundary value problems are typically stable, and the task is

usually to optimize speed and memory allocation.

For initial value problems, stability is a key issue as we have seen

before.

The 1-D wave equation is a flux-conservative equation
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Simple Example

Take the simplest flux-conservative equation - u scalar

u

t
= c

u

x

Forward time, centered space FTCS technique:

u( j,n +1) u( j,n)
t

= c
u( j +1,n) u( j 1,n)

2 x
 

 

 

 

This method turns out to be unstable.  Why ?
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von Neumann Stability

Imagine that the coefficients of the difference equation are so

slowly varying that we can consider them constant in space and

time.  Then, the independent solutions of

u( j,n +1) u( j,n)
t

= c
u( j +1,n) u( j 1,n)

2 x
 

  

 

  

are of the form u( j,n) =
neikj x

Where k is real and  generally complex.  Substituting into the

equation above yields:

(k) = 1 i
c t

x
sink x

The magnitude of >1 for all k 0, so the method is unstable. If

 <1, then the magnitude of the wave will decrease with time.
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Lax Method

The problem with the FTCS algorithm is cured by Lax by making

the following substitution:

u( j,n +1) =
1
2
u( j +1,n) + u( j 1,n)( )

c t

2 x
u( j +1,n) u( j 1,n)( )

u( j,n)
1
2
u( j +1,n) + u( j 1,n)( )

This yields

u( j,n) =
neikj xSubstituting

gives = cosk x i
c t

x
sink x

The stability criterion implies
2 1

c t

x
1

as claimed.  So, the Lax algorithm can be made stable.

Courant

condition
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Lax Method

Why does the Lax method work ?  Rewrite

u( j,n +1) u( j,n)
t

= c
u( j +1,n) u( j 1,n)
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Which is the FTCS representation of
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A diffusion term is added to the equation which stabilizes the

solution.  Note that for                    the amplitude of the wave will

slowly decrease but this is usually not serious because x is very

small (wavelengths < k x cannot be represented).

2
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c t
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Wave Equation

The von Neumann analysis on the wave equation yields exactly

the same Courant condition when using our finite difference

technique:

y(i,n +1) = 2[1 r2]y(i,n) y(i,n 1) + r2[y(i +1,n) + y(i 1,n)]

where

r
c t

x

i.e., you have to use r 1.

Back to our pulse on the string.  Try a few different things:

1. The string is made of two parts with different velocities (e.g.,

different mass densities)

2. The ends are free - not tied down.

See ‘movie’



Winter Semester 2006/7 Computational Physics I Lecture 13   13

Frequency Spectrum

Consider now a fixed point on the string and see how the

amplitude evolves with time.  We go back to the string with fixed

ends for this:

This is for a point 1/4 of the

distance from the left edge of

the string.  Let’s extract the

power spectrum from a Fourier

analysis (see last lecture).
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Frequency Spectrum

  

P(0) = P( f0) =
1

N 2 C0
2

P( fk ) =
1

N 2 Ck
2

+ CN k
2[ ] k = 1,2,…,

N

2
1 

 

 

 

P( fc ) = P( fN / 2) =
1

N 2 CN / 2
2

Recall:

What do we expect ?  String has length 4, so the expected

frequencies are given by
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c
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c
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Frequency Spectrum

From Gaussian

pulse at center

From displaced

Gaussian pulse

See different multiples of fundamental frequency, but not all
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Frequency Spectrum

Why are some of the frequency components missing ?  Has to do

with the symmetry of the starting wavepacket.

The wavepacket is symmetric

about the center.  The Fourier

components will be preserved in

time, so we can see which are

present at the start.  Clearly, only

the frequency components

corresponding to standing waves

which are symmetric about 0 will

survive.

f =
c

= N
c

(2L)
  

= L,L /2,...  missing, or N = 2,4,...

Initial pulse makes a big

difference in which frequency

components present
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More Realistic String

For a more realistic string, we need to add some more effects,

such as stiffness (force opposing the displacement in addition to

tension) and damping due to frictional losses.  Start with stiffness:
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  is the (dimensionless) stiffness parameter

L  is the length of the string

The discrete approximation for the 4th derivative is
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Some algebra yields
y( j,n + 2) = [2 2r2 6 r2M 2]y( j,n) y( j,n 1)

                + r2[1 + 4 M 2][y( j + 1,n) + y( j 1,n)] r2M 2[y( j + 2,n) + y(i 2,n)]

where M = L / x
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Stiff string

We have to decide how to handle the ends since now the grid

points one removed from the end sees a fictitious grid point one

step beyond the end (because of j±2) terms.  Solution:

y( 1,n) = y(+1,n) y(M + 1,n) = y(M 1,n)   (Hinge mechanism)

Take some parameters from a typical grand piano

0.58.7 10-43800.092093C7

0.53.8 10-53300.62262C4

0.57.5 10-62501.965.4C2

b (s-1)C(m/s)L(m)F(Hz)Note

Let’s look at the power spectrum which results.
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Stiff spring

From ‘Numerical simulations of piano strings I. A physical model for a struck string using finite differences

methods’, A. Chaigne, A. Askenfelt, J. Acoust. Soc. Am. 95 (2) 1994,

find out there is a maximum number of spatial steps for numerical

stability (after seeing my simulations diverge):

Nmax =
1 + 1 + 16 2[ ]

8

 

 
 

  

 

 
 

  

1
2

   where  =
fS

2 f1

fS   is the sampling frequency

f1  is the fundamental frequency

For our string, f1=262 Hz, and fs=10 kHz
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Stiff spring

Comparison C2 from table (blue) with zero stiffness (red):

Dispersion is introduced in the stiff spring, because the effective

wave speed becomes frequency dependent.  The frequency

components for the stiff string are shifted higher.  Introduces

characteristic sound.
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Damping

Frictional forces will add some damping to the amplitude as a

function of time.  Chaigne, Askenfelt describe the full simulation of

a piano string as follows:
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