Representing Numbers on the Computer

	J	$\mathrm{N}=\mathrm{J}$!
	1	1
	2	2
Let's calculate J!	3	6
	4	24
* Program Maxnumber	5	120
* Check what the max numbers are on the computer	6	720
Integer N	7	5040
*	8	40320
${ }_{\text {N }}^{\mathrm{N}=1} \mathrm{~J} \mathrm{~J}=1,20$	9	362880
	10	3628800
${ }_{\text {Enddo }}^{\text {print }}$-, J, N	11	39916800
stop end	12	479001600
	13	1932053504
What happened?	14	1278945280
	15	2004189184
	17	-288522240
	18	-898433024
	19	109641728
	20	-2102132736

Representing Integers

E.g., single precision: 4 bytes or 32 bits

1 bit is used for the sign (1 for - 0 for +)
31 bits for value
Because start from 0
Biggest integer $2^{31}-1=2147483647=01111111111111111111111111111111$

2's complement is standard for integer representation.

8 bit example (from Wikipedia)

Sign Bit											Value
0	1	1	1	1	1	1	1	127			
0	0	0	0	0	0	1	0	2			
0	0	0	0	0	0	0	1	1			
0	0	0	0	0	0	0	0	0			
1	1	1	1	1	1	1	1	-1			
1	1	1	1	1	1	1	0	-2			
1	0	0	0	0	0	0	1	-127			
1	0	0	0	0	0	0	0	-128			

Representing Integers

To calculate the 2's complement value: $\mathrm{N}^{*}=2^{n}-\mathrm{N}$, where n is the number of bits used to represent an integer. N^{*} is the 2's complement representation of the negative of N.
$\begin{array}{lcc}\text { e.g., } N_{10}=5 & N_{2}=00000101 & (n=8) \\ N_{2}{ }_{2}=2^{n}-N_{2}=10000 & 0000-00000101=11111011\end{array}$
2's complement is convenient for computer calculations
There is no rounding error - only a maximum allowed range for the values.

For the mathematicians: 2^{n} possible values of n bits form a ring of equivalence classes

Representing Integers

Or, invert the bits and add 1.
E.g., $5=00000101$

To convert to -5, flip the bits $\Rightarrow 11111010$
Then add $1 \quad \Rightarrow 11111011$

The other way, to go from -5 to 5 , flip the bits And add $1 \quad \Rightarrow 00000101$

Representing Real Numbers

Representation of real numbers (scientific notation - IEEE754):
Mantissa and Exponent + sign bit. E.g., single precision (4 bytes)
$\underset{(\text { sign })}{1}+\underset{\text { (exponent) }}{+}+\underset{(\text { mantissa })}{23}=32$ bits

Double precision
$\underset{\text { (sign) }}{1} \stackrel{+}{\text { (exponent) }} \underset{\text { (mantissa) }}{ }=64$ bits

$$
x=(-)^{s} \cdot a \cdot 2^{b-E}
$$

s is sign bit
a is normalized so first bit is 1 (radix point - implicit)
$E=1 / 2$ of (maximum exponent -1), or
$\mathrm{E}=01111111$ in single precision

Representing Real Numbers

Example: $4 / 7$ on the computer:

$$
\begin{aligned}
& \left.\frac{4}{7}\right|_{10}=\left.1.001001001 \cdots 2^{-1}\right|_{2} \\
& \left.\frac{4}{7}\right|_{10}=\left.\frac{100}{111}\right|_{2}=0+\frac{1000}{111} 2^{-1}=0+1 \cdot 2^{-1}+\frac{1}{111} \cdot 2^{-1}= \\
& =0+1 \cdot 2^{-1}+0 \cdot 2^{-2}+0 \cdot 2^{-3}+\frac{1000}{111} \cdot 2^{-4}=0.1001001001 \cdots=1.001001001 \cdots 2^{-1} \\
& \quad s=0 \\
& \begin{array}{l}
a=001001001001001001 \quad \text { (first } 1 \text { is implicit) } \\
\text { b-E }=-1 \text { or, }, b_{2}-0111111=-11_{10}, b_{2}=01111110
\end{array}
\end{aligned}
$$

Representing Real Numbers

If the exponent $b=11111111$, the number has a special value:

- if $a=00000000000000000000000$, value is $\pm \infty$ depending on s
- else, value is NaN (not a number)

If $b=00000000$

- $x= \pm 0 \cdot a \cdot 2^{-126}$

Otherwise $x= \pm 1$.a. $2^{b-127 ~(s i n g l e ~ p r e c i s i o n) ~}$

Precision	$\#$ bits		Relative precision	Max magnitude	Min magnitude (normalize d)
	a	b		$\approx 10^{-38}$	
single	23	8	$2^{-23} \approx 10^{-7}$	$2^{(255-127)} \approx 10^{38}$	$\approx 0^{-308}$
double	52	11	$2^{-52} \approx 10^{-16}$	$2^{(2047-1023)} \approx 10^{308}$	≈ 1

Calculation of π

As an example, consider the calculation of π using the following algorithm (due to Madhava of Sangamagrama, Indian Mathematician of the 14th century)

$$
\pi=\sqrt{12} \sum_{i=0}^{\infty}(-1)^{i} \frac{1}{(2 i+1) 3^{i}}
$$

First 16 digits of correct value 3.141592653589793

I	single precision	double precision
1	3.079201459885	3.079201435678
2	3.156181335449	3.156181471570
3	3.137852907181	3.137852891596
4	3.142604827881	3.142604745663
5	3.141308784485	3.141308785463
6	3.141674280167	3.141674312699
7	3.141568660736	3.141568715942
8	3.141599655151	3.141599773812
9	3.141590356827	3.141590510938
10	3.141593217850	3.141593304503
11	3.141592502594	3.141592454288
12	3.141592741013	3.141592715020
13	3.141592741013	3.141592634547
20	3.141592741013	3.141592653596
Error	\Uparrow	

After 20 iterations, single precision good to 110^{-7} Double
precision to 10^{-11}

Calculation of π

Calculation of π

Dear folks,
Our latest record which was announced already at press release time of 6-th of December, 2002 was as the followings;

Declared record:
http://www.super-computing.org/pi_current.html
1,030,700,000,000 hexadecimal digits
1,241,100,000,000 decimal digits
Two independent hexadecimal calculation based on two different algorithms generated more than $1,030,775,430,000$ hexadecimal digits of pi and comparison of two generated sequences matched completely. Computed hexadecimal digits of pi were radix converted into base 10, generating more than $1,241,177,300,000$ decimal digits of pi and generated decimal digits of pi were radix converted again into base 16. Radix converted hexadecimal digits of pi were compared with original hexadecimal digits of pi. There were no difference up to $1,241,100,000,000$ decimal digits. Then we are declaring 1,030,700,000,000 hexadecimal digits and $1,241,100,000,000$ decimal digits as the new world records. Details of computed results are available on the following URL's.
http://www.super-computing.org/pi-hexa_current.html (hexadecimal) http://www.super-computing.org/pi-decimal_current.html (decimal)

Rounding Errors for Simple Sum

In contrast to integers, there are rounding errors for real numbers. The error resulting from adding two numbers:

$$
\begin{aligned}
& y=x_{1}+x_{2} \\
& \tilde{y}=r d\left[r d\left(x_{1}\right)+r d\left(x_{2}\right)\right] \text { where } r d() \text { means computer rounding } \\
& \tilde{y} \approx\left[x_{1}(1+\varepsilon)+x_{2}(1+\varepsilon)\right](1+\varepsilon) \text { where } \varepsilon \text { is the typical relative error } \\
& |\varepsilon| \approx 2^{-t} \text { where } t \text { is the number of bits assigned to the mantissa }
\end{aligned}
$$

$$
\text { single precision, } \varepsilon=2^{-23} \approx 10^{-7} \quad \text { double precision, } \varepsilon=2^{-52} \approx 10^{-16}
$$

$$
\begin{aligned}
& \tilde{y} \approx x_{1}+x_{2}+\varepsilon\left(x_{1}+x_{2}\right)+x_{1} \varepsilon_{1}+x_{2} \varepsilon_{2} \\
& \frac{\tilde{y}-y}{y} \approx \varepsilon+\frac{x_{1}}{x_{1}+x_{2}} \varepsilon_{1}+\frac{x_{2}}{x_{1}+x_{2}} \varepsilon_{2}
\end{aligned}
$$

Can get large multiplication of relative error if $x_{1} \approx-x_{2}$

Error Propagation

More generally (see Lecture Notes from Scherer):

Input data $\vec{x}=\left(x_{1}, \cdots, x_{n}\right)$
Output data $\vec{y}=\left(y_{1}, \cdots, y_{m}\right)$
where
$\vec{y}=\varphi(\vec{x})=\varphi^{(r)} \varphi^{(r-1)} \cdots \varphi^{(1)}$ and the φ are simple functions
Define

$$
\begin{aligned}
& \vec{x}_{1}=\varphi^{(1)}(\vec{x}) \\
& \vec{x}_{i}=\varphi^{(i)}\left(\vec{x}_{i-1}\right) \\
& \overrightarrow{\mathrm{y}}=\varphi^{(r)}\left(\vec{x}_{r-1}\right)
\end{aligned}
$$

Treat all errors as small, represent with $\Delta \vec{x}$

Error Propagation

First step:
$\tilde{\vec{x}}_{1}=r d\left(\varphi^{(1)}(\vec{x}+\Delta \vec{x})\right) \approx\left(\varphi^{(1)}(\vec{x})+D \varphi^{(1)} \Delta \vec{x}\right)\left(1+E_{1}\right)$
First order in errors
where

$$
D \varphi^{(1)}=\left(\frac{\partial x_{1 i}}{\partial x_{j}}\right)=\left(\begin{array}{ccc}
\frac{\partial x_{11}}{\partial x_{1}} & \cdots & \frac{\partial x_{11}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial x_{1 n_{1}}}{\partial x_{1}} & \cdots & \frac{\partial x_{1 n_{1}}}{\partial x_{n}}
\end{array}\right)
$$

and
$E_{1}=\left(\begin{array}{lll}\varepsilon_{1}^{(1)} & & \\ & \ddots & \\ & & \varepsilon_{n_{1}}^{(1)}\end{array}\right)$

$$
\Delta \vec{x}_{1}=\tilde{\vec{x}}_{1}-\vec{x}_{1} \approx D \varphi^{(1)} \Delta \vec{x}+\varphi^{(1)}(\vec{x}) E_{1}
$$

Error Propagation

$$
\begin{aligned}
& \Delta \vec{y} \approx \vec{y} E_{r}+D \varphi^{(r)} \cdots \varphi^{(1)} \Delta \vec{x}+D \varphi^{(r)} \cdots \varphi^{(2)} \vec{x}_{1} E_{1}+\cdots+D \varphi^{(r)} \vec{x}_{r-1} E_{r-1} \\
& D \varphi=D \varphi^{(r)} \cdots \varphi^{(1)}=\left(\begin{array}{ccc}
\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right)
\end{aligned}
$$

The first term is the inevitable rounding error The second term contains the propagation of the input errors and initial rounding errors.
The other terms depend on how the algorithm is set up.

Error Propagation

Let's look at the individual terms:

$$
\begin{gathered}
\left.\vec{y} E_{r}\right|_{i} \approx\left|y_{i}\right| \varepsilon \quad \text { The rounding error on the final answer } \\
\left.D \varphi^{(r)} \cdots \varphi^{(1)} \Delta \vec{x}\right|_{i} \approx \sum_{j}\left|\frac{\partial y_{i}}{\partial x_{j}}\right|\left|\Delta x_{j}\right| \quad \text { Propagation of input errors }
\end{gathered}
$$

The other terms depend on the specific algorithm. The goal is for the algorithm to not give errors larger than the first two (unavoidable) errors.

Error Propagation

Let us look at an example in detail - the calculation of $a^{2}-b^{2}$

Procedure I:

1. Calculate a^{2} and b^{2}
2. Calculate their difference

$$
\vec{x}=\binom{a}{b} \quad \vec{x}_{1}=\binom{x_{1}^{2}}{x_{2}^{2}} \quad \vec{y}=x_{11}-x_{12}
$$

Unavoidable error:

$$
\begin{aligned}
& |y| \varepsilon=\left|a^{2}-b^{2}\right| \varepsilon \quad \sum_{j}\left|\frac{\partial y}{\partial x_{j}}\right|\left|\Delta x_{j}\right|=\left|\frac{\partial\left(a^{2}-b^{2}\right)}{\partial a}\right| \varepsilon+\left|\frac{\partial\left(a^{2}-b^{2}\right)}{\partial b}\right| \varepsilon=2(|a|+|b|) \varepsilon \\
& \Delta y^{(0)}=\left|a^{2}-b^{2}\right| \varepsilon+2(|a|+|b|) \varepsilon
\end{aligned}
$$

Error Propagation

Let us look at an example in detail - the calculation of $a^{2}-b^{2}$

Procedure I:

1. Calculate a^{2} and b^{2}
2. Calculate their difference

$$
\vec{x}=\binom{a}{b} \quad \vec{x}_{1}=\binom{x_{1}^{2}}{x_{2}^{2}} \quad \vec{y}=x_{11}-x_{12}
$$

Error magnitude estimation:

$$
\begin{aligned}
& \tilde{\bar{x}}=\binom{a\left(1+\varepsilon_{a}\right)}{b\left(1+\varepsilon_{b}\right)} \quad \tilde{\vec{x}}_{1}=\binom{a\left(1+\varepsilon_{a}\right) a\left(1+\varepsilon_{a}\right)\left(1+\varepsilon_{11}\right)}{b\left(1+\varepsilon_{b}\right) b\left(1+\varepsilon_{b}\right)\left(1+\varepsilon_{12}\right)} \approx\binom{a^{2}\left(1+2 \varepsilon_{a}+\varepsilon_{11}\right)}{b^{2}\left(1+2 \varepsilon_{b}+\varepsilon_{12}\right)} \\
& \tilde{\tilde{y}}=\left[a^{2}\left(1+2 \varepsilon_{a}+\varepsilon_{11}\right)-b^{2}\left(1+2 \varepsilon_{b}+\varepsilon_{12}\right)\right]\left(1+\varepsilon_{2}\right) \\
& |\Delta y| \leq\left|a^{2}-b^{2}\right| \varepsilon+3\left(a^{2}+b^{2}\right) \varepsilon
\end{aligned}
$$

Error Propagation

Procedure II:

1. Calculate $a-b$ and $a+b$
2. Calculate their product

$$
\vec{x}=\binom{a}{b} \quad \vec{x}_{1}=\binom{x_{1}-x_{2}}{x_{1}+x_{2}} \quad \vec{y}=x_{11} \cdot x_{12}
$$

Error magnitude estimation:
$\tilde{\tilde{x}}=\binom{a\left(1+\varepsilon_{a}\right)}{b\left(1+\varepsilon_{b}\right)} \quad \tilde{\tilde{x}}_{1}=\binom{\left(a\left(1+\varepsilon_{a}\right)-b\left(1+\varepsilon_{b}\right)\right)\left(1+\varepsilon_{11}\right)}{\left(a\left(1+\varepsilon_{a}\right)+b\left(1+\varepsilon_{b}\right)\right)\left(1+\varepsilon_{12}\right)} \approx\binom{(a-b)\left(1+\varepsilon_{11}\right)+a \varepsilon_{a}-b \varepsilon_{b}}{(a+b)\left(1+\varepsilon_{12}\right)+a \varepsilon_{a}+b \varepsilon_{b}}$
$\tilde{\tilde{y}}=\left[\left(a^{2}-b^{2}\right)\left(1+\varepsilon_{11}+\varepsilon_{12}\right)+2 a^{2} \varepsilon_{a}-2 b^{2} \varepsilon_{b}\right]\left(1+\varepsilon_{2}\right)$
$|\Delta y| \leq 3\left|a^{2}-b^{2}\right| \varepsilon+2\left(a^{2}+b^{2}\right) \varepsilon$

Error Propagation

Single precision

a	b	Exact value $\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)$	$\mathrm{a}^{2}-\mathrm{b}^{2}$	$(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})$
1.0	0.999	1.99910^{-3}	1.9989610^{-3}	1.9989710^{-3}
1.0	0.9999	1.999910^{-4}	2.0003310^{-4}	2.0002310^{-4}

Exercises 2

1. Look up a different algorithm to calculate π from the one presented in the lecture and code it in single and double precision. Compare the speed of convergence to the one shown in class.
2. Calculate $\left(a^{4}-b^{4}\right)$ numerically in single and double precision. Compare the resulting accuracy to the true value for test cases. Compare to the expected precision for single and double precision calculations.
