
Winter Semester 2006/7 Computational Physics I Lecture 5 1

Numerical Algorithms for Differential Equations

Euler method

Exact

2nd order Runge-Kutta

4th order Runge-Kutta

Last time, looked at bicycle rider

example with different techniques.

For this comparison, we took a

fixed time step in all methods (1s).

Can we do better with a variable

step ?

Topics: adaptive step size, higher derivatives, several dimensions

Winter Semester 2006/7 Computational Physics I Lecture 5 2

Adaptive Step Size

Let’s try it out on the bike riding example and the 2nd order R-K

method with a variable time step. Recall the 2nd order R-K

technique:

Comparison with Taylor series expansion shows that the error

comes from missing terms with higher derivatives of f and higher

powers of t. In adaptive step size methods, we take small t

when derivatives are large, and vice-versa.

x(t + t) = x(t) + f (x , t) t where
dx

dt
= f (x,t)

 x = x(t) +
1
2

f (x(t),t) t t = t +
1
2

t

x(t + t) = x(t) +
dx

dt
t +
1
2
d2x

dt2
(t)2Substition showed:

Winter Semester 2006/7 Computational Physics I Lecture 5 3

Adaptive Step Size

Basic idea: take smaller steps when the function is changing

rapidly. How do we know it is changing rapidly ? Evaluate

with different t and see what happens.

Typical Algorithm:

1. Update quantity of interest with current step size using your

algorithm, call the result y1

2. Take two steps each with 1/2 the current step size, call the

result y2

3. Compare y2,y1.

• If the difference is greater than a maximum value, eps, then

decrease the step, and go back to 1 (unless below

minimum step size)

• If the difference is within the requested resolution, accept

the step and proceed to the next step but with a large step

size.

Winter Semester 2006/7 Computational Physics I Lecture 5 4

Adaptive Step Size

vi

ti

Vi+1

ti+1

Standard step

(Standard step)/2

}

Compare end result

Winter Semester 2006/7 Computational Physics I Lecture 5 5

Adaptive Step Size

 v=1. ! Set the starting velocity

 t=0. ! Set the starting time

 dt=1. ! Set the starting step

 2 continue

* Calculate the intermediate velocity using the

* 2nd order R-K method

 vp=v+0.5*(P/(m*v)-(C*A*rho*v**2)/(2.*m))*dt

* Now the correction to the velocity

 dv1=(P/(m*vp)-(C*A*rho*vp**2)/(2.*m))*dt

* Now try with 1/2 the step size

 1 dt=dt/2.

 vp=v+0.5*(P/(m*v)-(C*A*rho*v**2)/(2.*m))*dt

 dv21=(P/(m*vp)-(C*A*rho*vp**2)/(2.*m))*dt

 v2=v+dv21

 vp=v2+0.5*(P/(m*v2)-(C*A*rho*v2**2)/(2.*m))*dt

 dv22=(P/(m*vp)-(C*A*rho*vp**2)/(2.*m))*dt

 dv2=dv21+dv22

* Get the velocity difference between the

* two estimates

 dv=abs(dv2-dv1)

 If (dv.gt.eps) then

* Check if at minimum step size

 If (dt.gt.2.*dtmin) then

* No, then take over 1/2 step result and

* Try again.

 dv1=dv21

 goto 1

 Else

* Yes, have to use this minimum step

* Use the finer step size for updating

 v=v+dv2

 t=t+2.*dt

* Reset the step size

 dt=2.*dt

 Endif

 Else

* Update

 v=v+dv2

 t=t+2.*dt

* Try larger step next time

 dt=4.*dt

 Endif

 If (t.le.total_t) goto 2

Winter Semester 2006/7 Computational Physics I Lecture 5 6

Adaptive Step Size

Euler method

Exact

2nd order Runge-Kutta

2nd order R-K adaptive

Here we take eps=0.001, tmin=0.001 s

Winter Semester 2006/7 Computational Physics I Lecture 5 7

Adaptive Step Size

Here we take eps=0.001, tmin=0.001 s

Many steps at small t,

only a few at large t

Main advantages:

• desired accuracy can be chosen,

rather than step

• can save considerable computer

time since minimum step not used

everywhere.

Winter Semester 2006/7 Computational Physics I Lecture 5 8

Higher Derivatives

Method 1: Rewrite higher derivative as series of single derivatives:

e.g.,
d2x

dt2 + q(t)
dx

dt
= r(t) can be rewritten as

dx

dt
= z(t)

dz

dt
= r(t) q(t)z(t)

We then use our favorite method for the first-order equations

twice. Take as an example the simple harmonic oscillator:

d2x

dt2 =
k

m
x

dv

dt
=

k

m
x

dx

dt
= v

Need to specify initial conditions:

e.g., x0 = 1 v0 = 0 Let's also take
k

m
= 1

Winter Semester 2006/7 Computational Physics I Lecture 5 9

Higher Derivatives

Start with the Euler Method:

vi+1 = vi
k

m
xi t xi+1 = xi + vi t Try t = 0.01

What happened ?

Algorithm does not conserve energy !

Winter Semester 2006/7 Computational Physics I Lecture 5 10

Harmonic Oscillator

Now we make the simple change

dv

dt
=

k

m
x

dx

dt
= v

vi+1 = vi
k

m
xi t xi+1 = xi + vi+1 t Euler-Cromer

Discovered by

accident !

This reminds us of the discussion from last lecture - different

ways to estimate the average derivative in a step.

Winter Semester 2006/7 Computational Physics I Lecture 5 11

Harmonic Oscillator

Let’s try the 2nd order R-K method on the SHO:

 x = x(t) +
1
2

fx (x,v,t) t v = v(t) +
1
2

fv (x,v,t) t t = t +
1
2

t

v(t + t) = v(t) + fv (x , v , t) t where fv (x,v,t) =
k

m
x

x(t + t) = x(t) + fx (x , v , t) t where fx (x,v,t) = v

Euler Method

2nd order R-K

Winter Semester 2006/7 Computational Physics I Lecture 5 12

Higher derivatives

Let’s us look at a different way to code higher derivatives:

d2y

dx2 + q(x)
dy

dx
= r(x)

Method 2: try to evaluate second derivative directly - need at least

three points to see the curvature.

Suppose have set of points x 1,x0,x1 and y 1,y0,y1

Lagrange polynomial interpolation :

p(x) = y 1
(x x0)(x x1)

(x 1 x0)(x 1 x1)
+ y0

(x x 1)(x x1)
(x0 x 1)(x0 x1)

+ y1
(x x 1)(x x0)

(x1 x 1)(x1 x0)

 = y 1
(x x0)(x x1)

2(t)2 + y0
(x x 1)(x x1)

(t)2 + y1
(x x 1)(x x0)

2(t)2

Winter Semester 2006/7 Computational Physics I Lecture 5 13

Higher Derivatives

Take derivatives of this polynomial:

 p (x) = y 1
2x x0 x1
2(x)2

+ y0
2x x 1 x1

(x)2
+ y1

2x x 1 x0
2(x)2

 p (x) =
y 1 2y0 + y1

(x)2

Now make the approximation: y(x) p(x)

And

 y (x0) p (x0) = y 1
x

2(x)2
+ y0

0

(x)2
+ y1

x

2(x)2
=

y(x0 + x) y(x0 x)
2 x

 y (x0) p (x0) =
y 1 2y0 + y1

(x)2
=

y(x0 x) 2y(x0) + y(x0 + x)

(x)2

Similar construction for higher derivatives (need more points)

Winter Semester 2006/7 Computational Physics I Lecture 5 14

Harmonic Oscillator

Let’s try this construction on our harmonic oscillator example.

d2x

dt2 =
k

m
x xi+1 = 2xi xi 1 +

k

m
xi

(t)2

Initial conditions : x0 = 1,
dx

dt t= 0

= 0

Second condition gives

 0 = x1 x 1, so 2x 1 = 2x0 -
k

m
x0(t)2 , x 1 =1-

(t)2
2

With x0,x-1 defined, can start algorithm

Winter Semester 2006/7 Computational Physics I Lecture 5 15

Harmonic Oscillator

Euler Method

Direct higher derivative

This technique is also

very stable.

Winter Semester 2006/7 Computational Physics I Lecture 5 16

Several Dimensions

So far, we have discussed first and higher order differential

equations in a single variable. Let’s look to see what happens

when we have more than one variable. As an interesting

example, we will look into planetary motion.

Of course, the basis of all this is Newton’s equation:

F 1 =
GM1M2

r2 ˆ r 12

The force along any direction is given by

ˆ e

F where ˆ e is the unit vector in the

direction of interest. E.g.,

Fx =
GM1M2

r2 ˆ x ˆ r =
GM1M2x

r3 worry about sign later

M1

M2

r 12

Winter Semester 2006/7 Computational Physics I Lecture 5 17

Planetary Motion

Start with two objects - the motion is in a plane. Also, assume for

now that one object is much more massive than the other (e.g.,

Sun-Earth system). We put the massive object at the center of the

coordinate system and look at the motion of the second object.

Start with simple Euler approach.

dvx
dt

=
GMx

r3 Here M is the mass of the Sun

dx

dt
= vx

dvy
dt

=
GMy

r3

dy

dt
= vy

Winter Semester 2006/7 Computational Physics I Lecture 5 18

Planetary Motion

Units: choice of units can make a problem easy or hard (don’t

want very small and very large numbers simultaneously because

of rounding errors). From experience - be very careful with units !

Circular motion :
mv2

r
=
GMm

r2

so v2r = GM, v =
2 r

T
= 2 if T in years, r in A.U.

So we can write GM = 4 2

Write the differential equations as difference equations (Euler-

Cromer algorithm)

vx,i+1 = vx,i
4 2xi
ri

3 t vy,i+1 = vy,i
4 2yi
ri

3 t

xi+1 = xi + vx,i+1 t yi+1 = yi + vy,i+1 t

Winter Semester 2006/7 Computational Physics I Lecture 5 19

Planetary Motion

Here we treat the problem a little more carefully - go to polar

coordinates. Note that for 2-body motion, motion has to be in a

plane. For a force which depends only on the separation of the

two objects, equivalent to one-body system, with position:

Reduced mass : μ =
m1m2

m1 + m2

r =

r 1

r 2

Orbital trajectory for this object is given by:

d2

d 2

1
r

+
1
r

=
μr2

L2 F(r) L = μr2
•

 (Angular Momentum)

F(r) is the force (keep general for now)

L is conserved (no external torques)

Winter Semester 2006/7 Computational Physics I Lecture 5 20

Planetary Motion

For F(r) =
GMm

r2 we get

1
r

=
μGMm

L2

1 ecos(+ 0)[]

Taking 0 = 0, we get

r =
L2

μGMm

1
1 ecos

 conic section

e=0 circle

0 e<1 ellipse

e=1 parabola

e>1 hyperbola

Winter Semester 2006/7 Computational Physics I Lecture 5 21

Planetary Motion

r =
L2

μGMm

1
1 ecos

 for e < 1

rmax =
L2

μGMm

1
1 e

= a(1+e) rmin =
L2

μGMm

1
1 + e

= a(1- e)

a =
rmin + rmax

2
=

L2

μGMm

1

1 e2

b =
L2

μGMm

1

1 e2

Winter Semester 2006/7 Computational Physics I Lecture 5 22

Planetary Motion

a =
L2

μGMm

1

1 e2

 L = μGMma(1 e2) conserved

L = μrminvmax = μrmaxvmin, so

vmin = GM
(1 e)
a(1 + e)

1 +
m

M

vmax = GM
(1 + e)
a(1 e)

1 +
m

M

e.g., e = 0.8, GM = 4 2 (AU),
m

M
= 1. 10 6, a = 1

vmax = 6 vmin =
2
3

 b = a 1 e2
= 0.6

Winter Semester 2006/7 Computational Physics I Lecture 5 23

Planetary Motion

With the Euler-Cromer method and

step size 0.01

Runge-Kutta with adaptive

step size. Program chose

step about 0.0006 for

eps=0.0001 . Try Euler-

Cromer with this step size:

Winter Semester 2006/7 Computational Physics I Lecture 5 24

Exercizes

1. Write a program which takes an adaptive step size and try it

out on the simple harmonic oscillator. Try different values of

eps and see what happens.

2. Write a program for the simple harmonic oscillator using the

4th order R-K algorithm. Compare the stability to the 2nd order

R-K method (look at long times, different step sizes).

3. For the planetary motion, take the force law to be 1/rn with

n=1.5,2.5,3 and plot some orbits. Next, try n=2.001 . Use an

adaptive step size program with a small step.

