
Winter Semester 2006/7 Computational Physics I Lecture 6 1

Planetary Motion

Last time, we discussed planetary motion for a 2-body system.

We found that the closed orbits are given by ellipses. Now we

take a closer look to see what happens if we change the force

law.

This has a long history - Kepler’s equation led to Newton’s

universal law of gravitation. Deviations from the 1/r2 behavior

indicate the presence of other bodies, and sometimes something

more fundamental (General Relativity).

Winter Semester 2006/7 Computational Physics I Lecture 6 2

Planetary Motion

Runge-Kutta with adaptive

step size for eps=0.0001 and

for law r-2.01.

Axis of ellipse rotates with time

(precession of the perihelion).

Study of precession for Mercury

has been historically very

important.

Winter Semester 2006/7 Computational Physics I Lecture 6 3

Planetary Motion

So, it seems planetary motion could be used to test the force

law. However, solar system has several planets + moons, so

have to also look at effect of these.

Mercury’s perihelion makes one complete rotation every 230,000

years. Cannot be explained solely from the effect of other

planets (will look at effect of Jupiter). Explanation came in 1917

from Einstein - General Relativity. Force law predicted by GR is

of the form:

FG
GMm

r2 1 +
r2

 with 1.1 10 8 AU2

Winter Semester 2006/7 Computational Physics I Lecture 6 4

Planetary Motion

The n-body problem:

F i =
Gmim j

r3

r ij
j i

n
 where

r ij is the vector from i to j

1

2

3

4

5

6

r 12

Need to define position

and velocities of all objects

at some time. Then can

follow their interactions.

Winter Semester 2006/7 Computational Physics I Lecture 6 5

Planetary Motion

Try the 2nd order R-K method with adaptive time step for 3 objects

interacting gravitationally.

Program outline:

1. Initialize masses, positions and velocities

2. Update positions and velocities using the 2nd order R-K

method with step size D

3. Update positions and velocities using two steps each of size

D/2.

4. Compare positions and velocities from 2.,3. If within range,

accept, else reduce time step and go back to 2.

5. Stop after fixed time

For this, we write a general program to update the positions and

velocities using the 2nd order R-K method.

Winter Semester 2006/7 Computational Physics I Lecture 6 6

Planetary Motion

x(i, j;t + t) = x(i, j;t) + fx(i, j)({

x },{

v }, t) t

v(i, j;t + t) = v(i, j;t) + fv(i, j)({

x },{

v }, t) t

fx(i, j)({

x },{

v },t) = v(i, j)

fv(i, j)({

x },{

v },t) =
Gmk (x(k, j) x(i, j))

x(i, j) x(k, j) 3
j =1

3
k i

and

 x (i, j) = x(i, j) +
1
2

v(i, j) t

 v (i, j) = v(i, j) +
1
2

Gmk (x(k, j) x(i, j))

x(i, j) x(k, j) 3
j =1

3
k i

t

 t = t +1/2 t

i is the particle index

j is the coordinate x,y,z

Update of position depends

only on velocity component.

Update of velocity depends

to total force in that direction.

Winter Semester 2006/7 Computational Physics I Lecture 6 7

Planetary Motion

An example:
Initial conditions:

dt=0.01 (years)

Gm1=Gm2=Gm3=4 2

x(1,1)=0. v(1,1)=0.

x(2,1)=-1. v(2,1)=10.

x(3,1)=1. v(3,1)=0.

x(1,2)=0. v(1,2)=0.

x(2,2)=1. v(2,2)=0.

x(3,2)=1. v(3,2)=-10.

x(1,3)=0. v(1,3)=0.

x(2,3)=0. v(2,3)=0.

x(3,3)=0. v(3,3)=0.

Winter Semester 2006/7 Computational Physics I Lecture 6 8

Planetary Motion

Winter Semester 2006/7 Computational Physics I Lecture 6 9

Planetary Motion

Initial conditions:

dt=0.01 (years)

Gm1=40 2

Gm2=Gm3=4 2

x(1,1)=0. v(1,1)=0.

x(2,1)=-1. v(2,1)=10.

x(3,1)=1. v(3,1)=0.

x(1,2)=0. v(1,2)=0.

x(2,2)=1. v(2,2)=0.

x(3,2)=1. v(3,2)=-10.

x(1,3)=0. v(1,3)=0.

x(2,3)=0. v(2,3)=0.

x(3,3)=0. v(3,3)=0.

Different example

Winter Semester 2006/7 Computational Physics I Lecture 6 10

Planetary Motion

Initial conditions:

dt=0.01 (years)

Gm1=400 2

Gm2=Gm3=4 2

x(1,1)=0. v(1,1)=0.

x(2,1)=-1. v(2,1)=10.

x(3,1)=1. v(3,1)=0.

x(1,2)=0. v(1,2)=0.

x(2,2)=1. v(2,2)=0.

x(3,2)=1. v(3,2)=-10.

x(1,3)=0. v(1,3)=0.

x(2,3)=0. v(2,3)=0.

x(3,3)=0. v(3,3)=0.

Numerical breakdown: objects get very close together - very large

forces, huge velocities.

Winter Semester 2006/7 Computational Physics I Lecture 6 11

Other Approaches to the N-body Problem

There are many approaches to the N-body problem See e.g.,

http://www.amara.com/papers/nbody.html.

•Particle-Particle (PP)

•Particle-Mesh (PM)

•Particle-Particle/Particle-Mesh (P3M)

•Particle Multiple-Mesh (PM2)

•Nested Grid Particle-Mesh (NGPM)

•Tree-Code (TC) Top Down

•Tree-Code (TC) Bottom Up

•Fast-Multipole-Method (FMM)

•Tree-Code Particle Mesh (TPM)

•Self-Consistent Field (SCF)

•Symplectic Method

Winter Semester 2006/7 Computational Physics I Lecture 6 12

Particle-Particle Approach

The Particle-Particle method is the method we just looked at:

1. Accumulate forces by finding the force F(i,j) of particle j on

particle i,

2. Integrate the equations of motion (which includes the

accumulated forces), and

3. Update the time counter.

4. Repeat for the next time step.

In our approach, we performed the simulation in double precision

with an adaptive time step. Still ran into numerical problems. We

only used 2nd order R-K. I have seen references where 7th order

R-K is used.

Winter Semester 2006/7 Computational Physics I Lecture 6 13

Particle-Mesh Approach

The Particle-Mesh method treats the force as a field quantity by

approximating it on a mesh. Differential operators, such as the

laplacian, are replaced by finite difference approximations.

Potentials and forces at particle positions are obtained by

interpolating on the array of mesh-defined values. Mesh-defined

densities are calculated by assigning particle attributes (e.g.

"charge") to nearby mesh points in order to create the mesh-

defined values (e.g. "charge density"). This is closely related to

the next problem we will address.

So the principle steps of the particle mesh calculation are:

 1. Assign "charge" to the mesh ("particle mass" becomes "grid density"),

 2. Solve the field potiential equation (e.g. Poisson's) on the mesh,

 3. Calculate the force field from the mesh-defined potential,

 4. Interpolate the force on the grid to find forces on the particles.

 5. Now like the PP: integrate the forces to get particle positions and velocities.

 6. Update the time counter.

Winter Semester 2006/7 Computational Physics I Lecture 6 14

Partial Differential Equations

A very common numerical application is solving partial

differential equations with boundary conditions. E.g., Laplace’s

equation:

2V

x2
+

2V

y2
+

2V

z2
= 0

This is somewhat different that the previous problems, in that we

are trying to find a static solution, rather than look at the time

evolution of a system. Also, the boundary conditions are typically

the value of V on a surface, rather than specifying single points.

There are no standard techniques, such as the Euler method or

Runge-Kutta to solve the problem numerically. However, a

general method, called ‘relaxation’ often works.

Winter Semester 2006/7 Computational Physics I Lecture 6 15

Relaxation Methods

Relaxation methods typically work well for elliptic equations …

General approach:

1. Define a grid where we will solve for the potential at the grid

points.

2. Define the boundary conditions on the grid. Values have to be

fixed also for the unknown interior points.

3. Update the grid values using the differential equations. Keep

repeating the update until the grid values are stable within a

prescribed value.

The main issues are:

• choosing an appropriate grid

• specifying the initial values on the grid

• using a good updating algorithm

Winter Semester 2006/7 Computational Physics I Lecture 6 16

Relaxation Methods

We have seen in Lecture 5 that we can approximate a second

derivative as follows:

d2y

dx2
y(x + x) 2y(x) + y(x x)

x()2

With this approximation, Laplace’s approach becomes:

2V

x2
+

2V

y2
+

2V

z2
V (i +1, j,k) 2V (i, j,k) +V (i 1, j,k)

x()
2 +

V (i, j +1,k) 2V (i, j,k) +V (i, j +1,k)

y()2
+
V (i, j,k +1) 2V (i, j,k) +V (i, j,k +1)

z()2
= 0

With solution ….

V (i, j,k) =
(V (i +1, j,k) +V (i 1, j,k)[](y)2(z)2 + ...

2 (y)2(z)2 + (x)2(z)2 + (x)2(y)2()

Winter Semester 2006/7 Computational Physics I Lecture 6 17

Relaxation Methods

For equal step sizes in the three dimension, we have:

V (i, j,k) =
1
6

V (i +1, j,k) +V (i 1, j,k) +V (i, j +1,k) +

V (i, j 1,k) +V (i, j,k +1) +V (i, j,k 1)

So, we update the value of the potential at a point using the

values at the neighboring sites. Note that the boundary values

are not allowed to be updated ! It is the boundary values that

specify the final solution - they are propagated by the differential

equations through the rest of the volume.

In problems with symmetry, choose coordinate system in such a

way that the calculational problem can be reduced. Try a parallel

plate capacitor as an example.

Winter Semester 2006/7 Computational Physics I Lecture 6 18

Parallel Plate Capacitor

If the plates are very long in the z direction, then near the center

of the capacitor we can treat this as a 2-dimensional problem.

Apart from the value of the potential on the capacitor surfaces,

we also need the potential far away. Set it to zero on a square at

|x|=10.,|y|=10. Define the grid in such a way that the boundaries

are on grid points.

x

y

x=-1 x=1

V=1V=-1
y=1

y=-1

Winter Semester 2006/7 Computational Physics I Lecture 6 19

Parallel Plate Capacitor

x

y

x=-1 x=1

V=1V=-1

x=-10,V=0 x=10,

V=0

Number of grid points along x: (xmax-xmin)/ x + 1 is an integer

Further requirement (xmax-1)/ x is an integer. Similarly for y

Let’s take x=0.2, y=0.2, for a total of (101)2=10201 grid points.

Winter Semester 2006/7 Computational Physics I Lecture 6 20

Parallel Plate Capacitor
* Initialize the grid - start with zero everywhere

 Call Vzero(V,10201) Need two arrays for the potential V(101,101),V0(101,101)

 Call Vzero(V0,10201)

 Call Vzero(Ex,10201) And two arrays for the electric field components

 Call Vzero(Ey,10201)

* Now fill in the boundary conditions.

 x=-1. Start with the left plate

 Nx=(x-xmin)/xstep+1 Find the index given our step size

 Do Ny=1,Nygrid Loop over y grid positions

 y=ymin+(Ny-1)*ystep Calculate the y value at this grid position

 If (abs(y).le.1.) then See if it is in the range of our capacitor plate

 V(Nx,Ny)=-1. Yes, then define the potential here

 Endif

 Enddo

 x=+1. Now the right plate, same procedure

 Nx=(x-xmin)/xstep+1

 Do Ny=1,Nygrid

 y=ymin+(Ny-1)*ystep

 If (abs(y).le.1.) then

 V(Nx,Ny)=+1.

 Endif

 Enddo

Winter Semester 2006/7 Computational Physics I Lecture 6 21

Parallel Plate Capacitor

 Do Nx=1,Nxgrid

 Do Ny=1,Nygrid

 V0(Nx,Ny)=V(Nx,Ny) Copy the grid to our second array

 Enddo

 Enddo

* Loop over the grid points and update the potential.

2 Iteration = Iteration+1 Keep track of the iteration number

 diffmax=0. This variable will keep track of the biggest change in V

*

 Do Nx=2,Nxgrid-1 Note that we leave off the end points - cant change BC

 x=xmin+(Nx-1)*xstep

*

 Do Ny=2,Nygrid-1,1

 y=ymin+(Ny-1)*ystep

*

 If (x.eq.-1. .and. (abs(y).le.1.)) goto 1 Check if on one of the plates

 If (x.eq.1. .and. (abs(y).le.1.)) goto 1

* Here we update the potential (2 dimensions because of symmetry)

 V(Nx,Ny)=(V(Nx+1,Ny)+V(Nx-1,Ny)+V(Nx,Ny+1)+V(Nx,Ny-1))/4.

*

Winter Semester 2006/7 Computational Physics I Lecture 6 22

Parallel Plate Capacitor

* Compare to previous value - keep track of maximum change

 If (abs(V(Nx,Ny)-V0(Nx,Ny)).gt.diffmax) diffmax=abs(V(Nx,Ny)-V0(Nx,Ny))

* Update the electric field

 Ex(Nx,Ny)=(V(Nx+1,Ny)-V(Nx-1,Ny))/(2.*xstep) Centered difference

 Ey(Nx,Ny)=(V(Nx,Ny+1)-V(Nx,Ny-1))/(2.*ystep) Recall that E is a vector

*

 1 continue

 Enddo

 Enddo End of loop over grid points

* Copy updated value of array

 Do Nx=1,Nxgrid

 Do Ny=1,Nygrid

 V0(Nx,Ny)=V(Nx,Ny)

 Enddo

 Enddo

* Check if we have converged or timed out

 If (diffmax.gt.eps .and. Iteration.lt.Itermax) goto 2

Winter Semester 2006/7 Computational Physics I Lecture 6 23

Parallel Plate Capacitor

Parameters:

 Data xstep/0.2/,ystep/0.2/,xmin/-10./,xmax/10./,

 & ymin/-10./,ymax/10./

 Data eps/0.001/

 Data Vwall/0./,Vcapacitor1/-1./,Vcapacitor2/1./

 Data Nxgrid/101/,Nygrid/101/

 Data Itermax/1000/

*

The program required 139 iterations to converge !

Next time (+1), we will look into more efficient algorithms. Let’s

look at the results:

Winter Semester 2006/7 Computational Physics I Lecture 6 24

Parallel Plate Capacitor

Potential

Here we are very close to 0 (10-6).

Winter Semester 2006/7 Computational Physics I Lecture 6 25

Parallel Plate Capacitor

Zoom in on region near the plates:

Looks reasonable.

Winter Semester 2006/7 Computational Physics I Lecture 6 26

Parallel Plate Capacitor

A different presentation:

Winter Semester 2006/7 Computational Physics I Lecture 6 27

Parallel Plate Capacitor

Now for the electric field. Length of arrow gives strength of field.

Direction from Ex and Ey

Winter Semester 2006/7 Computational Physics I Lecture 6 28

Exercizes

1. Write a program to simulate the motion of three particles

interacting gravitationally using the Euler method with

adaptive time step. Try it out with different initial conditions

and plot the results.

2. Find the potential and electric field numerically for the space

between two concentric cylinders, the inner cylinder at V=-1

and the outer cylinder at V=+1. Assume the cylinders are

very long and consider the region near the center of the

cylinders.

