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Partial Differential Equations

Last time, we looked at the Jacobi algorithm for solving

Laplace’s equation on a grid:

2V

x2
+

2V

y2
+

2V

z2
= 0

Iterative method (equal step size):

V (i, j,k) =
(V (i +1, j,k) +V (i 1, j,k)[ ]( y)2( z)2 + ...

2 ( y)2( z)2 + ( x)2( z)2 + ( x)2( y)2( )

V (r+1)(i, j,k) =
1
6

V (r )(i +1, j,k) +V (r )(i 1, j,k) +

V (r )(i, j +1,k) +V (r )(i, j 1,k) +

V (r )(i, j,k +1) +V (r )(i, j,k 1)

 

 

 

 

 

 

 

 

 

 

Jacobi Method
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Relaxation Methods and Diffusion

As we discussed last time, the relaxation method propagates the

information from the boundary conditions throughout the volume

of interest in a way consistent with the differential equations.  In

this way, we turn a search for a steady state solution into a kind of

diffusion problem.

x

y

x=-1 x=1

V=1
V=-1

x=-10,V=0 x=10,V=0

V
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Relaxation Methods and Diffusion

V (x,y,z,t)
t

= D
2V 

x2
+

2V 

y2
+

2V 

z2
 

 
 

 

 
 Diffusion equation:

Steady-state limit is the solution we are looking for.  In the

steady-state limit,

V (x,y,z,t ) is a solution of Laplace's equation

Diffusion Coefficient

V (x,y,z,t)
t

= 0

So,
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Matrix Representation of Relaxation

To make the math clearer, look in 1-D.  Use a grid with n+1 sites,

labelled 0,1,…,n.  We will assume equal grid spacing.  We use the

usual approximation for the second derivative:

So, the Laplace equation on a grid gives a system of linear

equations

V ( j 1) 2V ( j) +V ( j +1) = 0 n-1 equations for

n-1 unknowns

d2V (x j )

dx2

V (x j+1) 2V (x j ) +V (x j 1)

h2 =
V ( j + 1) 2V ( j) +V ( j 1)

h2

where h is the grid spacing, and x j = j h

Boundary Conditions: V (x0) = V0     V (xn ) = Vn    are fixed
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Matrix Representation of Relaxation

Or, in matrix form

  

2 1

1 2 1 0

1 2 1

0 1 2 1

1 2
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=

V0
0

0

0

Vn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i.e., determining the potential on a grid is equivalent to solving a

system of inhomogeneous linear equations (SLE’s).  In one

dimension, this can solved with a matrix inversion (to get A-1).

More on this type of problem in a future lecture.  In several

dimensions, the matrix inversion can be very slow and often does

not converge, so different techniques are necessary.  However,

notice the diagonal structure of the matrix.

  

A
 

V =
 

b 
 

V = A 1  

b 
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Matrix Representation of Relaxation

In matrix notation   A
 

V =
 

b 

When we solve by iteration, we write   

 

V (r +1)
= M

 

V (r ) + N
 

b 

V (r+1)(i) =
V (r )(i +1) +V (r )(i 1)

2

e.g., in our 1-D example

Formulate now more generally:

We will solve the set of linear equations using an iterative

approach, as we did in the Jacobi method.
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Matrix Representation of Relaxation

For convergence, we require

  

 

V (r +1)
= M

 

V (r )
+ N

 

b =
 

V (r )

and  
 

V (r )
= A 1  

b ,   which gives

A 1  

b = MA 1  

b + N
 

b 

This is consistent with: A 1
= MA 1

+ N,  so it holds if M + NA = E

 where E is the unit matrix

Substituting above gives

  

 

V (r +1)
= (E NA)

 

V (r )
+ N

 

b =
 

V (r ) N(A
 

V (r )  

b )

or N 1(
 

V (r +1)  

V (r )) = (A
 

V (r )  

b )
Different techniques come from different choices for N-1
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Jacobi Method

First, divide the matrix A into three parts (we saw that the non-

zero elements were clustered around the diagonal):

A = L +U + D

where D, L, U, are the diagonal, lower triangular and upper

triangular part of the matrix A.  For N-1, the diagonal part is chosen

for the Jacobi Method which we have been using.

N 1
= D

Which gives

M = E NA = E D 1(L +U + D) = D 1(L +U)

V (r+1)(i) =
1
aii

aijV
(r )( j) +

1
aii
bi

j i

  

 

V (r +1)
= M

 

V (r ) + N
 

b = D 1(L + U)
 

V (r ) + D 1  

b 
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Gauss-Seidel Method

In this method, we choose N = (D + L) 1

which leads to V (r+1)(i) =
1
aii

aijV
(r+1)( j) + aijV

(r )( j) + bi
j>ij<i

 

 
 

 

 
 

Advantage is that already updated results used on the fly, leading

to a faster convergence.

Solve the parallel plate problem from last time - need 139

iterations to get within the same max variation (instead of 178).
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Overrelaxation Gauss-Seidel Method

V (r+1)(i) = (1 w)V (r )( j)
w

aii
aijV

(r+1)( j) + aijV
(r )( j) + bi

j>ij<i

 

 
 

 

 
 

For convergence, require that 0 < w < 2

For a square grid with M2 points, the optimum value is

wopt
2

1 +
M

        wJacobi = wGauss Seidel = 1

In our example, wopt
2

1+ 101
2(1 0.03) 1.94

Using this value gives convergence after 112 iterations
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Comparison of Methods

  

V (r+1)(i, j,k) =
1
6
V (r )(i +1, j,k) +V (r )(i 1, j,k) +[ ] Jacobi Method

  

V (r+1)(i, j,k) =
1
6
V (r )(i +1, j,k) +V (r+1)(i 1, j,k) +[ ]

Take Laplace equation in 3-D:

Gauss-Seidel

Define V (r+1)(i, j,k) = V *(r+1)(i, j,k) V (r )(i, j,k)

where  V *  gives the new voltage from the chosen method

(Jacobi, Gauss - Seidel).

V (r+1)(i, j,k) = V (r+1)(i, j,k) +V (r )(i, j,k)

For = 1,  V (r+1)(i, j,k) = V *(r+1)(i, j,k)

For > 1,  we 'overrelax'  (speed up changes), < 1 'underrelax'
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Comparison of Speed of Convergence

Parallel plate capacitor problem as in the last lecture.  This time,

take max variation per iteration 10-6.  Compare speed of

convergence of different algorithms.  Monitor V at different points.

x

y

x=-1 x=1

V=1
V=-1

x=-10,V=0 x=10,V=0

x=-4.,y=-4

Jacobi 4395 Iterations

Gauss-Seidel 2381 Iterations

Gauss-Seidel,wopt=1.94, 230 Iterations 
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Comparison of Methods

Voltage at a particular point.  Note that nothing changes until

‘wave’ from boundary has reached the particular point.  Then

method converges quickly. Boundary condition arrives
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Poisson Equation

In the parallel plate example we worked out, we did not have any

sources. They are easily implemented (Laplace  Poisson

Equation)
2

x2
+

2

y2
+

2

z2
 

 
 

 

 
 V (x,y,z) =

(x,y,z)

0

V (r+1)(i, j,k) = (1 w)V (r )(i, j,k)
w

6

V (r+1)(i 1, j,k) +V (r )(i +1, j,k) +

V (r+1)(i, j 1,k) +V (r )(i, j +1,k) +

V (r+1)(i, j,k 1) +V (r )(i, j,k +1) +

(i, j,k)

0

h2

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

Gauss-Seidel with Overrelaxation

with (i, j,k) =

(x,y,z)dxdydz
x y z

h3

and h the cell size (assumed same in all directions)
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Matrix Representation

Or, writing

  

2 k2h2 1

1 2 k2h2 1

1 2 k2h2 1

1 2 k2h2 1

1 2 k2h2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V1
V2
V3

Vn 2

Vn 1

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

=

V0 h2   1

h2   2

h2   3

h2   n 2

Vn h2   n 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  =
0

1-D example of matrix
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Point Charge in a Box

Let’s try it out on a point charge in a box:

x

y

z

Box extends in x: 0-1,y:0-1,z:0-1.

The point charge is located at (x,y,z)=(0.101,0.501,0.501)

Take 20 intervals in each dimension (213=9261 grid points)

Walls have V=0

(x,y,z)

0

dxdydz =
q (0.101,0.501,0.501)

0

dxdydz =1.0
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Point Charge in a box

Using the overrelaxation method with w=1.8, converge after  63

iterations (variation less than 10-6).

Potential in three views

Check convergence with different values

of w:

127  1.9

63  1.8

821.6

1411.4

2131.2

3061.0

Iterationsw
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Point Charge in a Box

Electric Field
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Point Charge in Box

Now we try a finer grid to see more detail.

Take 40 intervals in each dimension (413=68921 grid points)

Walls have V=0

x

z

With w=1.8 need 141 iterations.  Calculation time increases by

factor (23)*(141/63) 16
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Point Charge in a box

Using the overrelaxation method with w=1.8, converge after  141

iterations (variation less than 10-6).

Potential in three views

Check convergence with different values

of w:

1371.9

1411.8

3001.6

Iterationsw
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Point Charge in a Box

Electric Field

I also tried a 1013 grid. Single

precision calculation did not

converge.  In double precision,

converged after 282 iterations.
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Point Charge in a Box

Start for 213 grid End for 213 grid

Start for 1013 gridEnd for 1013 grid
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Multigrid Methods

Suppose have an approximate solution to the Poisson equation, f1
Now use a coarser grid to find a correction, f2 by calculating

r1 =
2 f1 +

0

        2 f =

0

 

 
 

 

 
 

2 f2 = r1 on a coarser grid.

This solution will also not be exact, so can define another

residuum

r2 =
2 f2 +

0

        2 f =

0

 

 
 

 

 
 

2 f3 = r2

etc. Interpolate coarse grid corrections to fine grid.
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Multigrid Methods

Another approach is to start on a coarse grid, and use the

solution to provide the guess for the next iteration.  Let’s see how

much faster our 1013 grid converges if we start with the solution

from the 213 grid.  We try the following algorithm to set the

starting values of the grid:

V101(i, j,k) = V21(  i ,  j ,  k )    if  5(  i -1) < (i 1) < 5  i       1 < i < 101

                                               5(  j -1) < ( j 1) < 5  j      1 < j < 101

                                               5(  k -1) < (k 1) < 5  k    1 < k < 101

1318810-41.90

13410-41.90

26611710-41

73010-41

1013

steps

213

steps

w

} Big gain in speed

Here, overrelaxation faster.

In general, multigrid better,

but the two don’t mix well.
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Exercizes

1. Write a program with two point charges in a box where the

walls are at potential zero.  Place the two charges in the

center in y,z and at x values 10% of the box size from each

end wall.  Solve for the potential and the electric field using

the Gauss-Seidel method with overrelaxation.

2. Try the same problem with a coarse grid, which is then used

to give input values for the fine grid.  Compare the results to

using the fine grid from the beginning.


