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Eigenvalue Problems

Eigenvalue problems arise in many contexts in physics.  In matrix

form,
  A

 
x =

 
x 

This is somewhat different from our previous SLE, which had the

form
  A

 
x =

 

b 

where A, b were assumed known. In the eigenvalue problem we
don’t know x or .  This makes the problem more difficult to solve.

First example, moments of inertia

x
y

z
1

3

2
Im ,n = miri

2
m ,n

i=1

3
miri,mri,n

Symmetric second rank tensor
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Eigenvalue Problems

x
y

z
1

3

2 We can find the principal axes

(orthonormal vectors) as follows:

  

Im ,n xn
(r )

n =1

3
= I(r )xm

(r )   where I(r ) is the rth  eigenvalue

or, in matrix notation     I
 

x (r ) = I(r )  
x (r ),    r = 1,2,3

The eigenvectors satisfy xn
(r )

n=1

3
xn
(r')

= r,r'

Therefore xm
(r )Im ,n xn

(r')

m ,n=1

3
= xm

(r )I(r')xm
(r')

m=1

3
= I(r') r,r'
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Matrix Diagonalization

If we can make our matrix diagonal, then the solution is easy

(elements of a diagonal matrix are its eigenvalues). So, most

numerical methods look for a similarity transformation which

diagonalizes the matrix

  

A
 

x =
 

x   is our starting equation

P 1AP =  A   where  A  is diagonal

Similarity transformations leave the eigenvalues unchanged:

det P 1AP E = det P 1(A E)P

                         = det P det A E det P 1

                         = det A E

Eigenvalues of A can be calculated in principle from the secular

equation: det A E = 0
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Matrix Diagonalization

  

Let   
 

v = P 1  
x , then

 A v = P 1APP 1  
x = P 1  

x =
 

v 

The elements of a diagonal matrix are its eigenvalues, so we can

read off the eigenvalues of A from A’.  The eigenvectors of the

diagonal matrix A’  are vectors with zeros everywhere except for

one component, which we can take as 1.  I.e.,

  

 
v ( i)

=

0

0

1

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   for eigenvalue i

and so we get the eigenvectors of

interest as follows:

  

 
x ( i)

= P
 

v ( i)

which is just the ith column of P
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Jacobi Method

Consider a symmetric 2x2 matrix.  It can be diagonalized by a

rotation of the coordinate system (Jacobi Method).  Rotation by an

angle  corresponds to an orthogonal transformation with the

rotation matrix:

R(12)
=

cos sin

sin cos
 

 
 

 

 
 

Similarity transformation

A RAR 1
=

cos sin

sin cos
 

 
 

 

 
 

A11 A12

A12 A22

 

 
 

 

 
 

cos sin

sin cos
 

 
 

 

 
 

                   =
c2A11 + s2A22 2csA12 cs(A11 A22) + (c2 s2)A12

cs(A11 A22) + (c2 s2)A12 s2A11 + c2A22 + 2csA12

 

 
 

 

 
 

is diagonal if

cs(A11 A22) + (c2 s2)A12 = 0   where  c = cos ,s = sin

Note: P=R-1
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Jacobi Method

We can solve for tan(2 ) =
2A12

A22 A11

For more than 2 dimensions, we start by looking for the dominant

off-diagonal element.  Suppose it is in row i and column j.  We

can perform a rotation in the ij plane to cancel this element:

  

A R( ij )AR( ij ) 1,     where     R( ij )
=

1

c s

s c

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j

i

Keep going until matrix as

diagonal as possible
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Example - square

As an example, consider the principal axes of a thin, square plate.

x

y

b

a

The plate is infinitely thin in the

z direction.

Imn = miri
2

mn mirimrin( ) r2
mn rmrn( )dm

i

dm = dxdy  where  is the mass density

I11 = x2
+ y2( ) x2( )dxdy0

a
0
b

= a
b3

3
=
mb2

3

Similarly: I22 =
ma2

3

I33 = (x2 + y2)dxdy
0

a

0

b

= b
a3

3
+ a

b3

3

 

 
 

 

 
 = m

a2

3
+
b2

3
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Square Plate

The off-diagonal elements are:

I12 = I21 = xdx
0

a

ydy
0

b

=
a2b2

4
=

mab

4

I13 = I23 = I31 = I32 = 0 Because no width in z

So, we have

I =
m

12

4b2 3ab 0

3ab 4a2 0

0 0 4(a2 + b2)

 

 

 

 

 

 

 

 

We will now find the rotation which produces a diagonal matrix.

tan(2 ) =
2A12

A22 A11
=

2( 3ab)

(4a2 4b2)
=

3ab

2(b2 a2)
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Jacobi Method

Let’s try it on our example - assume a square plate (a=b):

R(12) =

1
2

1
2

0

1
2

1
2

0

0 0 1

 

 

 

 

 

 

 

 

 

 

R(12) 1 =

1
2

1
2

0

1
2

1
2

0

0 0 1

 

 

 

 

 

 

 

 

 

 

x

y

b

a

  

tan(2 ) =
3ab

2(b2 a2)
= , = 45
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Jacobi Method

Applying the similarity transformation:

R(12)IR(12) 1
=
ma2

12

1
2

1
2

0

1
2

1
2

0

0 0 1

 

 

 

 

 

 

 

 

 

 

4 3 0

3 4 0

0 0 8

 

 

 

 

 

 

 

 

1
2

1
2

0

1
2

1
2

0

0 0 1

 

 

 

 

 

 

 

 

 

 

                   =
ma2

12

1
2

1
2

0

1
2

1
2

0

0 0 1

 

 

 

 

 

 

 

 

 

 

1
2

7
2

0

1
2

7
2

0

0 0 8

 

 

 

 

 

 

 

 

 

 

                  =
ma2

12

1 0 0

0 7 0

0 0 8

 

 

 

 

 

 

 

 



Winter Semester 2006/7 Computational Physics I Lecture 9   11

Jacobi Method

The eigenvalues are therefore: ma2

12
,
7ma2

12
,
8ma2

12
,

The eigenvectors are the columns of P=R-1:

  

R(12) 1
=

1
2

1
2

0

1
2

1
2

0

0 0 1

 

 

 

 

 

 

 

 

 

 

    so,

 
x (1)

=

1/ 2

1/ 2

0

 

 

 

 

 

 

 

 

 
x (2)

=

1/ 2

1/ 2

0

 

 

 

 

 

 

 

 

 
x (3)

=

0

0

1

 

 

 

 

 

 

 

 

x

y

b

a
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Square Plate

Recall, we have

I =
m

12

4b2 3ab 0

3ab 4a2 0

0 0 4(a2 + b2)

 

 

 

 

 

 

 

 

To find the eigenvalues, we can solve

det I E = 0 = det

4b2 12 /m 3ab 0

3ab 4a2 12 /m 0

0 0 4(a2 + b2) 12 /m

 

 

 

 

 

 

 

 

Let’s go back to the square plate problem and look at other ways

to solve these types of problems:
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Square Plate

= (4b2 )(4a2 )(4(a2 + b2) ) + 3ab( 3ab)(4(a2 + b2) )[ ]
=

3
+ 8 2(a2 + b2) (16a4 + 39a2b2 +16b4 ) + 28a2b2(a2 + b2)[ ]

At this point, we can try to solve with a symbolic algebra solver

(e.g., Mathematica, Maple)

Let’s put in concrete values and solve numerically:

a = 1,b = 1

0 =
3 16 2

+ 71 56[ ]
1 = 8, 2 = 1, 3 = 7

so, 1 = 8m /12, 2 = m /12, 3 = 7m /12

where =
12
m
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Roots to Cubic Equation

C207: Roots of a Cubic Equation

Author(s): K.S. Kölbig Library: MATHLIB

Submitter: Submitted: 15.01.1988

Language: Fortran Revised: 01.12.1994

Subroutine subprograms RRTEQ3 and DRTEQ3 compute the three roots of

x3+rx2+sx+t=0

for real coefficients r, s, t.

Structure:

SUBROUTINE subprograms

User Entry Names: RRTEQ3, DRTEQ3

We will look into root finding in 2 lectures from now.

Once we have the eigenvalues, we can find the eigenvectors:

CERN Library
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Square Plate

4b2 12 i /m 3ab 0

3ab 4a2 12 i /m 0

0 0 4(a2 + b2) 12 i /m

 

 

 

 

 

 

 

 

x1
( i)

x2
( i)

x3
( i)

 

 

 

 

 

 

 

 
= 0

Substituting our numerical values (starting with 1)

4 8 3 0

3 4 8 0

0 0 8 8

 

 

 

 

 

 

 

 

x1
(1)

x2
(1)

x3
(1)

 

 

 

 

 

 

 

 
= 0

We now have a SLE which we need to solve to get u(1).  Note that

our matrix is singular, so we need a different technique than those

described in the previous lecture.
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Singular Value Decomposition

Singular Value Decomposition is based on following theorem:

Any MxN matrix A whose number of rows, M, is greater than or

equal to its number of columns,N, can be written as the product of

an MxN column-orthogonal matrix U, and NxN diagonal matrix W

with positive or zero elements, and the transpose of an NxN

orthogonal matrix V. (recall, the transpose of an orthogonal matrix

equals the inverse).  By column orthogonal, we mean:

UikUin
i=1

M
= kn         1 k,n N

V jkV jn
j=1

M
= kn         1 k,n N

Usefullness: The columns of U whose same numbered elements

Wjj are non-zero are an orthonormal set of basis vectors that span

the range; the columns of V whose Wjj are zero are an

orthonormal basis for the nullspace (Ax=0).
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Singular Value Decomposition

2. SVD analysis of gene expression data

Singular value decomposition and principal component analysis

Michael E. Wall, Andreas Rechtsteiner, Luis M. Rocha

Modeling, Algorithms, and Informatics Group (CCS-3)

Los Alamos National Laboratory, MS B256

Los Alamos, New Mexico 87545, USA
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Singular Value Decomposition

We use a standard code to perform the singular value

decomposition. See http://www.bluebit.gr/matrix-calculator/

U =

1/ 2 1/ 2 0

1/ 2 1/ 2 0

0 0 0

 

 

 

 

 

 

 

 

W =

7 0 0

0 1 0

0 0 0

 

 

 

 

 

 

 

 

VT
=

1/ 2 1/ 2 0

1/ 2 1/ 2 0

0 0 1

 

 

 

 

 

 

 

 
V =

1/ 2 1/ 2 0

1/ 2 1/ 2 0

0 0 1

 

 

 

 

 

 

 

 

So, basis vector corresponding to 1

  

 
x (1) =

0

0

1
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Singular Value Decomposition

  

 
x (1) =

0

0

1

 

 

 

 

 

 

 

 

 
x (2) =

1/ 2

1/ 2

0

 

 

 

 

 

 

 

 

 
x (3) =

1/ 2

1/ 2

0

 

 

 

 

 

 

 

 

The other two basis vectors are found in a similar way (see

exercizes):

x

y

b

a
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Quantum Mechanics

Eigenvalue problems are natural in quantum mechanics.  We

start by considering a two dimensional problem:

  

2

2m
2  

r ( ) + V
 

r ( )
 

r ( ) = E
 

r ( )    Schroedinger Eqn

  

2

2m

(m +1,n) + (m 1,n) 2 (m,n)

( x)2
+

(m,n +1) + (m,n 1) 2 (m,n)

( y)2

 

 

 

 

 

 

 

 

 

 

 

 

+V (m,n) (m,n) E (m,n)

On a grid, we have

Eigenvalue problem - only certain E will give solutions.  Boundary

values are specified.  Have MxN unknown values of  and in

principle also of E.
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Quantum Mechanics

In matrix form:

  

 
 =

(0,0)

(0,1)

 

 

 

 

 

 

 

 
H

2

2m
2

+ V (
 

r )

H
 
 = E

 
 

Setting x = y = 1 we have

  

H =

2

2m

4 +V (0,0) 1 0

1 4 +V (0,1) 1

 

 

 

 

 

 

 

 

Note that there are other

non-diagonal terms

which are not 0 because

we need also m+1,m-1.

Also, need some

prescription for the

boundaries.
Note that the matrix has (MN)2

elements !  Solving this is an

interesting computing problem



Winter Semester 2006/7 Computational Physics I Lecture 9   22

Power Method

It is usually not possible to find all eingenvalues and eigenvectors.

Focus on finding the dominant ones (minimum energy states, e.g.)

The matrix is typically sparse (mostly 0’s), and special techniques

exist for solving this.  One example is the ‘power method’.

Assume   1 > 2 3 n

Also assume

  

 
x = ai

 
x ( i)

i =1

n
     with a1 0,

 
x ( i) are eigenvectors with

eigenvalues i so that

                                    H
 

x ( i)
= i

 
x ( i)

Now apply H repeatedly:

  

H
 

x = ai i
 

x ( i)
i =1

n
, H k  

x = ai i
k  
x ( i)

k
    

i =1

n

1
ka1

 
x (1)

Get      by normalizing   
 

x (1)   H k  
x 



Winter Semester 2006/7 Computational Physics I Lecture 9   23

Power Method

Try it out on our thin square example.

  

 
x =

1

1

1

 

 

 

 

 

 

 

 

I
 

x =

1

1

8

 

 

 

 

 

 

 

 
                            

 
x (1)

0.12

0.12

0.98

 

 

 

 

 

 

 

 

I5  
x =

1

1

32768

 

 

 

 

 

 

 

 
                 

 
x (1)

3.05 10 5

3.05 10 5

1

 

 

 

 

 

 

 

 

I10  
x =

1

1

1.07 109

 

 

 

 

 

 

 

 
            

 
x (1)

9.3 10 10

9.3 10 10

1
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Power Method

It is also possible to get eigenvectors other than the one

corresponding to the biggest eigenvalue by modifying the starting

matrix.  For example, we can shift the matrix

 I =
2E I2

where  is the largest eigenvalue.  This then gives the

eigenvector corresponding to the smallest eigenvalue.  In our

example, take =8.  We then find

  

 
x =

1

1

1

 

 

 

 

 

 

 

 
 I 
 

x =

63

63

0

 

 

 

 

 

 

 

 
       

 
x (2)

0.7071

0.7071

0

 

 

 

 

 

 

 

 

With further manipulation of I, we can find the remaining

eigenvector (see exercizes).
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Variational Technique

The methods discussed so far only work in some circumstances,

and, since eigenvalue problems are so common, many other

techniques have been developed.  One further important example

is the ‘variational technique’, which allows the determination of the

ground state.  This technique relies on the variational principle,

which says that the energy of any wavefunction is at least as large

as the energy of the ground state.

Technique: make repeated guesses for ; the one which gives

the lowest energy is closest to the ground state wavefunction.

  

E*
*H d

 
r 

* d
 

r 
   where   is a trial wavefunction

E* E0
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Variational Technique

As an example, we consider the 2-D harmonic oscillator potential:

V (x,y) =
1
2
kxx

2
+
1
2
kyy

2

Take a square grid, with equal spacing in x,y:

N x N , N y N ,

So we have a total of (2N+1)2 bins.

Take the following values: kx = 10, ky = 40, = 0.2, N = 10

Starting wavefunction: (i, j) = 0. for  i, j = 0,2N

(i, j) = 1. for all other i, j

x = 2. + i y = 2. + j
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Harmonic Oscillator

*

* Calculate the energy of this configuration.  First, we create the new

* wavefunction by operating on it with the Hamiltonian (units with hbar=m=1):

*

      Do i=1,19

         Do j=1,19

            x=-2.+i*step

            y=-2.+j*step

            phi1(i,j)=-0.5*(phi(i+1,j)+phi(i-1,j)+phi(i,j+1)+phi(i,j-1)

     &                      -4.*phi(i,j))/step**2+

     &                0.5*(kx*x**2+ky*y**2)*phi(i,j)

         Enddo

      Enddo

*

* Now calculate the energy by integrating psi*psi1.  Divide by psi*psi

* for normalization

*

      top=0.

      bottom=0.

      Do i=1,19

         Do j=1,19

            top=top+phi(i,j)*phi1(i,j)

            bottom=bottom+phi(i,j)*phi(i,j)

         Enddo

      Enddo

*

     Energy=top/bottom

H (m,n) =
1
2

(m + 1,n) + (m 1,n) 2 (m,n)

( x)2 +

(m,n + 1) + (m,n 1) 2 (m,n)

( y)2

 

 

 

 

 

 

 

 

 

 

 

 

+V (m,n) (m,n)

               = 1(m,n)

  

E*
*H d

 
r 

* d
 

r 

Note: don’t need

volume element

since it cancels in

the ratio.  More on

integration next

time.
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Harmonic Oscillator

*

* Compare this energy with previous

*

      If (Energy.lt.Energy0) then

*

* New minimum

*

         Energy0=Energy

         Print *,'Iteration ',Iter,'   New Energy ',Energy

         Do i=0,20

            Do j=0,20

               psi2(i,j)=psi(i,j)          !Save lowest energy configuration in psi2

            Enddo

         Enddo

      Else

*

* reset psi and try new variation

*

         Do i=1,19

            Do j=1,19

               psi(i,j)=psi2(i,j)

            Enddo

         Enddo

      Endif

*

*

* Try a modified test function

*

 2      rn=rndm()

         Ix=rn*4./step+1

         If (Ix.le.0.or. Ix.ge.20) goto 2

 3      rn=rndm()

         Iy=rn*4./step+1

         If (Iy.le.0.or. Iy.ge.20) goto 3

         call RNORML(vec,1)

         psi(Ix,Iy)=psi(Ix,Iy)+vec*var

         goto 1

      Endif

Gaussian distributed

random number
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Harmonic Oscillator
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Harmonic Oscillator
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Exercizes

1. Use the second and third eigenvalues found for the principal

axes of a square example and find the basis vectors using the

singular value decomposition technique.

2. Find the third eigenvector for the thin square plate problem

using the power method with shifted matrix.


