Hadronic Energy Calibration in ATLAS

Bratislava Calorimeter Meeting

eting Sven Menke, MPI München 14. March 2005, Bratislava with many thanks to the Hadronic Calibration Group

Hadron Calorimetry in ATLAS The H1 Weighting Method

- Cluster–Level method
- Cell–Level method
- Cell–Level method with detailed Simulation

Jets and Clusters

- Topological clustering
- Cluster Moments

Testbeam

- Cell–Level method applied to Testbeam data
- Roadmap to ATLAS
- Conclusions

ATLAS Calorimeters

- Layout of the ATLAS Calorimeters
- EM LAr-Pb accordion calorimeter
 - Barrel (EMB): $|\eta| < 1.4$
 - End-cap (EMEC):
 1.375 < |η| < 3.2
- Hadron calorimeters
 - Barrel (Tile): Scint.-Steel $|\eta| < 1.7$
 - End-cap (HEC): LAr-Cu $1.5 < |\eta| < 3.2$
- Forward calorimeter (FCal) $3.2 < |\eta| < 4.9$
 - FCal1: LAr-Cu
 - FCal2&3: LAr-W

Electromagnetic vs. Hadronic Showers

An electromagnetic shower

- consists of visible EM energy only
- is very compact ($X_0 \simeq 2 \text{ cm}$)
- can be simulated with high precision since mostly electromagentic processes need to be calculated
- allows high accuracy calibration (mostly for detector non-uniformities, electronics non-linearities, leakage)

A hadronic shower

- consists of EM and hadronic energy (some invisible)
- is very large ($\lambda_0\simeq 20\,{
 m cm}$)
- is difficult to simulate since it involves many QCD processes
- limits the accuracy for calibration (mostly due to large fluctuations)
- The examples show 50 GeV showers of an electron (left) and a pion (right) in iron

Hadron Calorimetry in ATLAS

A hadronic shower consists of

- EM energy (e.g. $\pi^0 \rightarrow \gamma \gamma$) O(50 %)
- visible non-EM energy (e.g. dE/dx from π^{\pm}, μ^{\pm} , etc.) O(25%)
- invisible energy (e.g. breakup of nuclei and nuclear excitation) O(25 %)
- escaped energy (e.g. ν) O(2%)
- each fraction is energy dependent and subject to large fluctuations

- invisible energy is the main source of the non-compensating nature of hadron calorimeters
- hadronic calibration has to account for the invisible and escaped energy

S. Menke, MPI München

From a Geant4 simulation of EMEC and HEC (done by Pavol Strizenec):

- EM energy strongly anti-correlated with visible non-EM energy
- visible non-EM energy strongly correlated with invisible energy
- need to separate EM part of the shower from the non-EM part
- apply a weight to the non-EM part to compensate invisible energy

How to separate EM fraction from non-EM fraction?

- $X_0 \ll \lambda \simeq 20 \, \mathrm{cm}$
- high energy density in a cell denotes high EM activity
- low energy density in a cell corresponds to hadronic activity
- apply weights as function of energy density

S. Menke, MPI München

H1 Weighting Method

$$E' = w E$$

$$w = [c_1 \exp(-c_2 E/V) + c_3]$$

• $w \rightarrow 1$ for large E/V:

- $c_3 \approx 1$
- weighting does not change electromagnetic clusters
- small energy density dominated by hadronic activity: w > 1:
 - $c_{1,2} > 0$
 - exact values depend on total cluster energy, choice of weighted unit (cell or cluster), ...

plot shows 30 GeV pions from 2002 EMEC-HEC test beam as a simple cluster weight example

- restrict sample to pions fully contained in the EMEC
- plot E_{beam} / E vs. E / V with E, V: cluster energy and volume, respectively
- extract weight function
- compare resolution for weighted and unweighted sample

H1 Weighting Method > Cluster Weighting

$$E'_{\text{sub-calo}} = w E_{\text{sub-calo}}$$
$$w = \left[c_1 \exp\left(-c_2 E_{\text{sub-calo}}/V_{\text{sub-calo}}\right) + c_3\right]$$

- reconstruct "3D"-cluster
 - cluster definition follows in a couple of slides
- split the cluster in sub-calorimeter parts (e.g. EMEC/HEC)
 - because weights depend on intrinsic calorimeter properties
- apply cluster-energy dependent weights found in test beam as function of E_{sub-calo} / V_{sub-calo}
- tested on single particle test beam data and MC only
 - no straightforward extension to jets
 - serves as a simple test case for H1 weighting
 - does not need any MC as input

7

H1 Weighting Method > Cell Weighting

$$\begin{array}{rcl} {\mathcal E}_{\mathsf{cell}}' & = & {\mathit w} \, {\mathcal E}_{\mathsf{cell}} \\ {\mathit w} & = & \left[{\mathit c_1} \exp \left(- {\mathit c_2} \, {\mathcal E}_{\mathsf{cell}} / {\mathit V_{\mathsf{cell}}} \right) + {\mathit c_3} \right] \end{array}$$

reconstruct "3D"-cluster

- split the cluster around cells with high energy density
 - to separate electromagnetic from purely hadronic deposits
- apply cluster-energy and region (granularity, sub-calorimeter) dependent weights found in test beam as function of E_{cell}/V_{cell}
- tested (so far) on single particle test beam data and MC only
 - should be possible to extend the method to jets
 - drives the need for cluster classification of the split clusters

8

H1 Weighting Method > Cell Weighting with MC

start again with "3D"-clustering and splitting to define cluster-level quantities the weights might depend on

 $W = \left(E_{\text{cell}}^{\text{em}} + E_{\text{cell}}^{\text{non-em vis}} + E_{\text{cell}}^{\text{non-em invis}} + E_{\text{cell}}^{\text{escaped}}\right) / \left(E_{\text{cell}}^{\text{em}} + E_{\text{cell}}^{\text{non-em vis}}\right)$

- energy and energy density
- cluster shape

 $E'_{\text{cell}} = w E_{\text{cell}}$

- distance of the cell from shower axis, ...
- production of detailed Geant4 simulations for the EMEC+HEC combined test beam 2002 and full ATLAS (Rome calibration sample) has started
- contains "calibration hits" in the 4 energy categories for
 - active material
 - absorber material
 - dead material
- some of the problems to solve for the weight definition:
 - active cells tend to be smaller in $\Delta\eta imes \Delta\phi$ than corresponding absorber cells
 - absorber not covered by read-out area is called dead material
 - need to find out which dead material area should be included in which read-out cell

S. Menke, MPI München

Clusters

- a group of calorimeter cells which are topologically connected
- often grouped around a seed cell with some large energy
- either fixed in size: SlidingWindow
- or dynamic: CaloTopoCluster
- should be the base for hadronic calibration

Jets

- a collection of 4-vectors based on tracks and/or calorimeter objects (CaloCells or CaloTowers or CaloClusters)
- defined by a metric on 4-vector level
- should only need calibration against double counting although hadronic calibration on jet level is still possible
- used for physics studies

Hadronic Calibration Group

decided to base hadronic calibration on CaloTopoCluster

Jets and Clusters > Electronics Noise and PileUp

 Clustering needs to cope with large cell-to-cell variations of

- electronics noise
- pile-up noise
- granularity

use conditions database to obtain

- $\sigma_{\text{noise}} = \sigma_{\text{elec-noise}} \oplus \sigma_{\text{pile-up}}$ for every channel in every event
- use E/σ_{noise} for discrimination in topological clustering
- use $\rho_{\perp} = E_{\perp} / V$ for definition of hot spots and topological re-clustering of previously found clusters

- CaloTopoClusterMaker makes CaloClusters from CaloCells in all Calorimeters
 - by grouping cells which are topological neighbors, where neighbors (defined in CaloIdentifier) can be
 - all2D: in the same layer and calorimeter
 - all3D: in the same calorimeter
 - super3D: anywhere across all calorimeters
 - with three Signal over Noise thresholds
 - CellThreshold: $|E|/\sigma_{noise} > T_{cell}$ (default $T_{cell} = 0$); only cells above this threshold are used
 - NeighborThreshold: $|E|/\sigma_{noise} > T_{neighbor}$ (default $T_{neighbor} = 2$); only cells above this threshold are asked for their neighbors
 - SeedThreshold: *E* or $|E|/\sigma_{noise} > T_{seed}$ (default *E* and $T_{seed} = 4$); only cells above this threshold initiate a cluster
 - with σ_{noise} being either
 - fixed; only useful for testing ...
 - elec-noise from CaloNoiseTool (default)

Topological Cluster Maker > Code

- CaloTopoClusterMaker since athena 8.2.0 is a CaloClusterMakerTool which is used by the generic CaloClusterMaker top algorithm
 - 1. loop over all CaloCells in the given CaloCellContainer(S)
 - a) make a vector of cells above cell threshold with IdentifierHash as index
 - b) create a proto-cluster for each cell above neighbor threshold
 - c) create a list (mySeedCells) for each cell above seed threshold and mark them used

2. sort initial mySeedCells in E/σ_{noise} in descending order

3. loop over mySeedCells

- a) loop over the neighbors of the current cell
 - i. for neighbors above neighbor threshold merge proto-clusters; if not marked used do so and add to myNextCells
 - ii. neighbors below neighbor threshold not belonging to any proto-cluster are included in parent proto-cluster
- 4. set mySeedCells = myNextCells
- 5. return to 3. if mySeedCells is not empty
- 6. keep proto-clusters with at least one cell above seed threshold

Topological Cluster Maker > Example Event

- ► Jet with p⊥ > 70 GeV, |η| < 5 in EM barrel, Tile Barrel, Gap, & Extended Barrel
 - all plots show same $\Delta \eta \times \Delta \phi$ region
 - the color boxes denote the energy per cell in MeV on a log-scale (different scale for each plot)
 - 4 EM Barrel Layers
 - 3 Tile Barrel Layers
 - Tile Gap Scintillators
 - 3 Tile Extended Barrel Layers
 - all in one cluster

Jets and Clusters > Topological Cluster Splitter

- CaloTopoClusterMaker makes clusters across all Calorimeters (LArNeighbourOption::super3D)
 - based on Signal over Noise thresholds
 - and topological neighbors
- Classification requires identification of "Hot-Spots"
 - need to split clusters around local maxima in real physical observable
 - transverse cell energy density $\rho_{\perp} = E_{\perp}/V$ seems best
- CaloTopoClusterSplitter re-clusters each existing cluster into one or more clusters
 - around the local maxima above a seed threshold
 - with same (or different) topological neighbors
 - without cell or neighbor thresholds
 - keeping local maxima in separate clusters
 - with ρ_{\perp} ordered seeds in every iteration

Topological Cluster Splitter > Code

- present in offline releases since athena 8.2.0
- CaloTopoClusterSplitter is a CaloClusterMakerTool like CaloTopoClusterMaker
 - 1. loop over all CaloCell members of all previously made CaloClusters
 - a) store all cells as potential neighbor cells for topological clustering; the parent cluster is kept as a reference such that only cells within the same parent cluster can be re-clustered together
 - b) create a proto-cluster for each cell
 - c) keep as seed cells those which are a local max ($\rho_{\perp} > 500 \text{ MeV}/(600000 \text{ mm}^3)$, $\rho_{\perp} > \max\{\rho_{\perp}, \text{neighbors}\}, N_{\text{neighbors}} \ge 4$)
 - 2. sort current seed cells in descending order in ρ_{\perp} and mark them used
 - 3. loop over the current seed cells
 - a) loop over the neighbors of the current seed cell
 - i. include the neighbor cell in current proto-cluster if it is not a local max itself, does not belong to a proto-cluster of size > 1, and does belong to the same parent cluster
 - ii. add the neighbor cell to the list of next seed cells if it is not marked used and mark it used
 - 4. copy the list of next seed cells to the current list
 - 5. iterate (starting at step 2) until list of current seed cells is empty
 - 6. copy all cells of parent clusters not re-clustered in separate clusters (one per parent cluster)
 - 7. remove all original CaloClusters and create new CaloClusters from the local max proto-clusters and the rest proto-clusters
- switched on by default as specified in CaloRec/CaloTopoCluster_jobOptions.py

Topological Cluster Splitter > Example Event

Jet with p_⊥ > 70 GeV, |η| < 5 in EM, HEC, FCal

Parent Cluster before splitting

- EMEC has only 2 layers in this region
- EMEC3 neighbors HEC1
- HEC1 overlaps with the front of FCal1
- rear faces of FCal1 and 2 neighbor HEC3 and 4
- all 9 layers belong to the same cluster
- at least 4 potential local maxima visible

S. Menke, MPI München

Topological Cluster Splitter Example Event after Splitting

same Cluster after splitting

- different sub-clusters denoted by different box colors
- 7 local maxima were found in the parent cluster
- sub-clusters are also crossing system boundaries
- single γ clusters remain un-split

S. Menke, MPI München

- need to characterize clusters in order to classify them as electromagnetic or hadronic
- \blacktriangleright the CaloCluster class provides energy and flawed η and ϕ values only
- solution is to provide a new member of type std::map<int,CaloClusterMoment> in CaloCluster with
 - x, y, z-position of the cluster centroid
 - first moments in η and ϕ
 - deviation of the cluster principal axis from IP-axis
 - second moments in *r* and λ , with *r* (λ) being the radial (longitudinal) cell distances from the shower axis (center)
 - Iongitudinal depth of the shower center
 - normalized lateral and longitudinal moments

19

- CaloRec/CaloClusterMomentsMaker is a CaloClusterCorrectionTool as it alters the contents of CaloCluster
- It is invocable like any other correction by simply adding this tool to the list of cluster corrections to be used by the cluster maker in the jobOptions
- The tool accepts a list of std::string names of moments to compute and stores the enum, value pairs in the CaloCluster
- Details of the moment calculation:

•
$$E_{\text{norm}} = \sum_{\{\text{cell} \mid E_{\text{cell}} > 0\}} E_{\text{cell}}$$

•
$$(x, y, z)_{\text{clus}} = \sum_{\{\text{cell} \mid E_{\text{cell}} > 0\}} E_{\text{cell}} (x, y, z)_{\text{cell}} / E_{\text{norm}}$$

•
$$\langle \eta \rangle = \sum_{\{\text{cell} \mid E_{\text{cell}} > 0\}} E_{\text{cell} \eta_{\text{cell}} / E_{\text{norm}}$$

•
$$\langle \phi \rangle = \sum_{\{\text{cell} \mid E_{\text{cell}} > 0\}} E_{\text{cell}} \phi_{\text{cell}}(\pm 2\pi) / E_{\text{norm}}$$

Cluster Moments > Implementation Contd.

Details of the moment calculation, continued:

• *r* and λ for each cell member w.r.t. the principal axis beeing closest to the IP-axis (or the IP-axis if deviation is larger than 30°).

•
$$\langle r^2 \rangle = \sum_{\{\text{cell} \mid E_{\text{cell}} > 0\}} E_{\text{cell}} r_{\text{cell}}^2 / E_{\text{norm}}$$

•
$$\langle \lambda^2 \rangle = \sum_{\{\text{cell} \mid E_{\text{cell}} > 0\}} E_{\text{cell}} \lambda_{\text{cell}}^2 / E_{\text{norm}}$$

- $|ateral = |at_2/(|at_2 + |at_{max})|$
- lat_2 like $\langle r^2 \rangle$ but excluding the 2 most energetic cells in nominator
- lat_{max} like $\langle r^2 \rangle$ but using the 2 most energetic cells only in nominator at fixed r = 4 cm
- longitudinal like lateral but with λ instead of r and a fixed value of $\lambda = 10$ cm for the 2 most energetic cells

21

- Examples are for DC1 single electron and single pion runs with electronics noise
- Similar DC2 (Rome) samples are not yet available
- Pavel made the initial round of job submissions, I added the two newer moments (lateral, longitudinal) in a second round
- ► The electron runs studied are 2101, 2103-2106 for E = 5, 20, 50, 100, 200 GeV and $|\eta| < 2.5$
- ► The pion runs studied are 2036, 1206, 1207 for $E_{\perp} = 5$, 20, 200 GeV and $|\eta| < 2.7$

Plot shows all clusters from electrons in a r vs |z| view with color coded E_{\perp}

Plot shows all clusters from pions in a r vs |z| view with color coded E_{\perp}

S. Menke, MPI München

Cluster Moments > Examples > Electrons: Depth

Plot shows all clusters from electrons in a r vs |z| view with color coded depth (distance from Calorimeter front) of the shower center

S. Menke, MPI München

Cluster Moments > Examples > Pions: Depth

Plot shows all clusters from pions in a r vs |z| view with color coded depth (distance from Calorimeter front) of the shower center

S. Menke, MPI München

EMEC & HEC combined beam test 2002 > Setup

- H6 beam area at the CERN SPS
 - $6 \le E \le 200 \text{ GeV}$ $e^{\pm}, \mu^{\pm}, \pi^{\pm}$ beams
 - 90° impact angle (unlike ATLAS)
 beam
 - Scintillators for trigger and timing
 - 4 MWPCs with horiz. and vert. layers upstream
 - Optional additional material upstream
- Main goals for the beam test
 - study the region $\eta \sim$ 1.8
 - obtain calibration constants for e and π
 - compare to detailed MC in order to extrapolate to jets
 - test methods for an optimal hadronic energy reconstruction

PS

EMEC

1/2 HEC 2

EMEC & HEC combined beam test 2002 > Topological Clustering

- Event display for a 120 GeV pion in nA
- Cell-based topological nearest neighbor cluster algorithm
 - Clusters are formed in 2D
 - Seed cut $E/\sigma_{noise} > 4$
 - Include cells neighboring cluster members with $|E/\sigma_{noise}| > 3$
 - Cell cut $|E/\sigma_{noise}| > 2$
 - Iterate
- Neighbor means common edge

Energy calibration > Cluster weights

- Cluster weights are found by minimizing: $\chi^2 =$

- $E_{\text{reco}} = E_{\text{em}} \left(c_1 \cdot \exp \left[-c_2 \cdot E_{\text{em}} / V \right] + c_3 \right)$ (H1 method)
- $E_{\rm tot} = E_{\rm reco} + E_{\rm em}^{\rm cluster \, leak}$
- $E_{\text{leak}}^{\text{EMEC (HEC)}}(E_{\text{em}}^{\text{EMEC (HEC)}}/V^{\text{EMEC(HEC)}})$ from MC
- c₂ fixed to 1000 cm³/GeV (1500 cm³/GeV) for EMEC (HEC)
- upper (lower) plot shows *E*_{reco}/*E*_{em} for EMEC (HEC)

Energy calibration Resolution for pions

- $\succ \sigma_E/E$ (%) noise subtracted
 - data: $\frac{84.1 \pm 0.3}{\sqrt{E/GeV}} \oplus 0.0 \pm 0.3$
 - noise: $\sigma_{\rm noise}/E \simeq 1 - 1.5 \, {\rm GeV}/E$

- Geant3 and all Geant4 models give similar results
- **combined** e/π ratio
 - shows total $E_{\rm reco}/E_{\rm em}$
 - indicates the amount of non-compensation
 - fitted e/h-ratios for combined HEC and EMEC have no direct interpretation

Energy calibration > Cell Weighting with MC

work done together with Pavel Stavina

 $E'_{\text{cell}} = w E_{\text{cell}}$

$$W = \left(E_{\text{LAr+Abs}}^{\text{em}} + E_{\text{LAr+Abs}}^{\text{non-em vis}} + E_{\text{LAr+Abs}}^{\text{non-em invis}} + E_{\text{LAr+Abs}}^{\text{escaped}} \right) / \left(E_{\text{LAr}}^{\text{em}} + E_{\text{LAr}}^{\text{non-em vis}} \right)$$

start with "3D"-clustering and splitting to define cluster-level quantities the weights might depend on

- energy and energy density
- cluster shape
- distance of the cell from shower axis, ...
- for test beam data use sum of "2D"-clusters "3D"-cluster
- take cluster energy on EM scale as start value
- interpolate weights from MC according to cluster energy
- apply cell weights and re-calculate cluster energy
- iterate

Cell Weighting with MC > Choice of Variables

the choices for the denominator in the weight basically are:

- 1. include the absorber in the denominator: $w \sim 1/E_{\rm LAr+Abs}^{\rm em + non-em}$
- 2. use only the liquid argon part: $w \sim 1/E_{\text{LAr}}^{\text{em + non-em}}$
- 3. use the "reconstructed" liquid argon part: $w \sim 1/E_{rec}$
- for the HEC alone choice 2 and 3 are equivalent and differ by the constant sampling ratio only
- for the EMEC choice 2 is not possible because the sampling ratio varies with η
- we tried choice 1
 - theoretical electron weights are 1
 - no dependency on sampling ratios
 - gives biased results due to mismatch with reconstructible energy <u>;</u>

this leaves us with choice number 3

Cell Weighting with MC > Avoiding Bias

- compare the reconstructed cell energy with total visible cell energy (LAr+Abs) for 200 GeV pions
- shows the variation in the sampling ratio (this quantity is constant for dE/dx only)
- most probable value is 1 but large positive tails shift mean to higher values
- results in over-weighting when cell weights are calculated from total visible cell energy
- upper plot shows EMEC
- Iower plot shows HEC

Cell Weighting with MC > Choice of x-Axis

We tried many choices for the x-axis

- function of
 E^{w/wo noise}/*V*_{cell} for
 every layer
- scaled by 1/E_{beam} or 1/log E_{beam} for better interpolation
- modified by (optional) non-linear terms
- plots show weights
 vs. 1/log E_{beam} scaled energy
 density without noise
 for the three EMEC
 layers (left) and the
 three HEC layers
 (right) at point J

S. Menke, MPI München

For the NIM paper we fitted cell weights for EMEC and HEC by minimizing

$$\chi^{2} = \sum_{\text{events}} \frac{\left(E_{\text{beam}} - E_{\text{leak}} - E_{\text{reco}}\right)^{2}}{\sigma_{\text{noise}}^{2} + \sigma_{\text{leak}}^{2}}$$

• with
$$E_{\text{reco}} = \sum_{i=1}^{N_{\text{weights}}} w_i \sum_{\substack{\text{cells with} \\ \rho_i \le \rho < \rho_i + 1}} E_{\text{cell}}$$

- 25 weights for HEC per energy point
- 25 weights for EMEC per energy point
- fit was performed for every beam energy separately

35

- $\sim \sigma_{\text{noise}}$ was not weighted
- comparison plots show weights for 200 GeV pions
 - NIM paper weights are in black
 - upper plot shows EMEC weights
 - lower plot shows HEC weights

Application of the Weights to Data and MC $\triangleright \pi^-$

- > the following plots are for $x = E_{cell}^{with noise} / V_{cell} \times 1 / \log E_{clus}$
- examples show (normalized) cluster energies for 80 GeV π^- before and after the weighting iteration
 - in red before the iteration (em)
 - in blue after the iteration (w)
 - usually 2 iterations are enough

Application of the Weights to Data and MC $\triangleright \pi^- \triangleright$ Resolution

- Iterative procedure at point J including noise yields:
 - data: $\sigma_E / E = 89.8 \% / \sqrt{E (GeV)} \oplus 3.5 \%$
 - MC: $\sigma_E / E = 73.8 \,\% / \sqrt{E \,(\text{GeV}) \oplus 3.9 \,\%}$
- weighted energy matches true total deposited energy in the cluster for MC (plot not shown) :
- beyond 40 GeV improved resolution after weighting
- below 40 GeV weighting corrects the scale only
- have a look at electrons to estimate influence on pure electromagnetic cluster regions on the next slide

S. Menke, MPI München

Application of the Weights to Data and MC > e⁻

- apply same procedure to (MC) electrons
- this will show how large the bias is for pure electromagnetic showers
 - resolution gets worse
 - scale is off for low energies but o.k. for high energies
 - example shows 20 GeV and 148 GeV electrons

Application of the Weights to Data and MC > e⁻ > Resolution

resolution

- worse after weighting as expected
- probably tolerable since we've to be concerned about electromagnetic parts of hadronic showers only

bias

- as high as 15 % for 10 GeV
- vanishes beyond 40 GeV

39

- Calibration Hits from Geant4 MC will give the calibration constants for hadronic calibration
 - compare MC with EMEC/HEC/FCAL and EMB/Tile 2004 combined test-beams
 - extend method to full ATLAS simulation
- port single particle calibration to jets
 - requires cluster splitting and identification
 - should not require new constants if previous step is successful
- \triangleright cross-check with p_{\perp} -balance
 - form all cells in one η -region (similar to total missing E_{\perp} studies)
 - form $Z^0 \rightarrow e^+e^-/\gamma + jet$ events
 - possibly introduces bias from trigger/ID performance

40

Conclusions

- Hadron calorimetry in ATLAS requires
 - topological clustering to identify "hot spots" and set the energy scale
 - H1 type weighting
 - works on cluster- and cell-level in test beam
- Detailed new Geant4 MC with "calibration hits"
 - first look at MC looks promising
 - will be used for cell-level H1 weighting
- Hadronic Calibration is cross-checked in situ
 - with p_{\perp} -balance for entire η -rings form minimum bias events
 - with p_{\perp} -balance of Z^0/γ + jet events