First look at H6 combined testbeam 2004 data

ATLAS Meeting

Sven Menke, MPI München

25. July 2004, MPI

Data quality

- only basic signal reconstruction so far
- fixed sample or polynomial shape fit no digital filtering
- one calibration constant for each layer no channel-to-channel calibration
- Cabling bugs
- Alignment
- Reconstruction
 - Reco is done in athena
 - Standard Topo Clustering
 - Event Display examples

Rob's monitoring page http://atlas.web.cern.ch/Atlas/GROUPS/LIQARGSOFF/ TestBeam/Monitoring/ explains how to run on H6 data

- full analysis is possible with standard athena code
- constants for digital filtering and calibration are being worked on
- for the time being use cubic fit to pulse shape (above 50 ADC counts) and maximum sample (else)

most data was taken in MEDIUM gain for HEC and EMEC, AUTO gain for FCal

- $\sigma_{\text{noise}} = 200(660, 480)$ MeV for EMEC (HEC, FCal)
- compared to CBT-EC1 factor of 10 larger noise in EMEC (would be factor of 2 with HIGH gain) and 3 in HEC (would be 1 with HIGH gain) probably too much for good resolution for electrons, but o.k. for pions
- need to repeat electron runs with HIGH gain or AUTO gain

CBT-EC1 plots (2002)

Cabling bugs

- FCal module 0 should have been cabled as quadrant II on side A – actual cabling is quadrant II on side C
 - due to non-trivial Identifier mapping not so easy to convert everything to side C
 - kept everything on side A instead and swapped $\phi \rightarrow 1.5\pi \phi$ for EMEC and HEC
- Some swaps on the FEB level have been found
 - sampling 1 and 2 were swapped for the EMEC
 - FCal channel numbers were swapped in 64-channel blocks $(1 \dots 64 \rightarrow 64 \dots 1)$

FCal channel swaps

HEC Alignment

Unlike 2002 testbeam no cell boundaries parallel to beam

- can't use simple cell boundary scan for alignment
- take reconstructed cluster centers to compare with nominal impact position
- take offset in y from Leonid's drawing: $y_0 = 53.1$ cm
- Results for mean of 5 standard points with 200 GeV π⁻ beams in TB coordinate frame:
 - $x_{\rm clus} x_{\rm theo} = -0.49 \pm 0.42 \, {\rm cm}$
 - $y_{clus} y_{theo} = -0.40 \pm 0.43$ cm
 - no significant shift observed
 - uncertainty with 0.4 cm quite large

4

HEC cluster positions

Reconstruction

- Reconstruction is done in standard athena framework
 - can use CaloTopoClusterMaker for clustering
 - and get standard CBNT (combined ntuple)

- visualize H6 events (or other data) with http://www.cern.ch/menke/CaloEventDisplayH6.tar.gz
 - example shows $|\sum E_{cell}|$ for run Nr. 1068 (180 GeV, π^- , x = -8.5 cm, y = -12.0 cm)
 - projection is $x \to |\tan \theta| \times \cos \phi$, $y \to |\tan \theta| \times \sin \phi$,
 - keeps physical proportions in each layer
 - allows for easy matching in η