Hadronic Energy Calibration in ATLAS

ATLAS Seminar

Sven Menke, MPI München

22. December 2004, MPI/München

with many thanks to the Hadronic Calibration Group:

- C. Alexa, T. Barillari, H. Bartko, M. Bosman, T. Carli, D. Cavalli, A. Gomes, K. Jon-And, A. Kiryunin, J. Koultchitski, T. LeCompte, P. Loch, R. McPherson, S. Menke, F. Merrit, A. Miagkov, H. Oberlack, F. Paige, J. Pilcher,
- S. Rajagopalan, C. Roda, D. Salihagic, C. Santoni, P. Schacht, A. Solodkov, P. Strizenec, R. Teuscher, M. Vetterli, I. Vichou, M. Vincter, V. Vinogradov
 - Hadron Calorimetry in ATLAS
 - The H1 Weighting Method
 - Cluster–Level method
 - Cell–Level method
 - Cell–Level method with detailed Simulation
 - Jets and Clusters
 - Testbeam
 - Signal Reconstruction
 - Electromagnetic Scale
 - Response to Pions
 - Cell–Level method applied to Testbeam data
 - Roadmap to ATLAS
 - Conclusions

ATLAS Calorimeters

- Layout of the ATLAS Calorimeters
- EM LAr-Pb accordion calorimeter
 - Barrel (EMB): $|\eta| < 1.4$
 - End-cap (EMEC): $1.375 < |\eta| < 3.2$
- Hadron calorimeters
 - Barrel (Tile): Scint.-Steel $|\eta| < 1.7$
 - End-cap (HEC): LAr-Cu $1.5 < |\eta| < 3.2$
- Forward calorimeter (FCal) $3.2 < |\eta| < 4.9$
 - FCal1: LAr-Cu
 - FCal2&3: LAr-W

Electromagnetic vs. Hadronic Showers

An electromagnetic shower

- consists of visible EM energy only
- is very compact ($X_0 \simeq 2$ cm)
- can be simulated with high precision since mostly electromagentic processes need to be calculated
- allows high accuracy calibration (mostly for detector non-uniformities, electronics non-linearities, leakage)

A hadronic shower

- consists of EM and hadronic energy (some invisible)
- is very large ($\lambda_0 \simeq$ 20 cm)
- is difficult to simulate since it involves many QCD processes
- limits the accuracy for calibration (mostly due to large fluctuations)
- The examples show 50 GeV showers of an electron (left) and a pion (right) in iron

Hadron Calorimetry in ATLAS

- A hadronic shower consists of
 - EM energy (e.g. $\pi^0 \rightarrow \gamma \gamma$) O(50 %)
 - visible non-EM energy (e.g. $\mathrm{d}E/\mathrm{d}x$ from π^{\pm},μ^{\pm} , etc.) $O(25\,\%)$
 - invisible energy (e.g. breakup of nuclei and nuclear excitation)
 O(25 %)
 - escaped energy (e.g. ν) O(2%)
- each fraction is energy dependent and subject to large fluctuations

- invisible energy is the main source of the non-compensating nature of hadron calorimeters
- hadronic calibration has to account for the invisible and escaped energy

Hadron Calorimetry in ATLAS > Hadron Shower Components

From a Geant4 simulation of EMEC and HEC:

- EM energy strongly anti-correlated with visible non-EM energy
- visible non-EM energy strongly correlated with invisible energy
- need to separate EM part of the shower from the non-EM part
- apply a weight to the non-EM part to compensate invisible energy
- How to separate EM fraction from non-EM fraction?
 - $X_0 \ll \lambda \simeq 20 \,\mathrm{cm}$
 - high energy density in a cell denotes high EM activity
 - low energy density in a cell corresponds to hadronic activity
 - apply weights as function of energy density

H1 Weighting Method

$$E' = w E$$

 $w = [c_1 \exp(-c_2 E/V) + c_3]$

- \blacktriangleright $w \rightarrow 1$ for large E/V:
 - $c_3 \approx 1$
 - weighting does not change electromagnetic clusters
- small energy density dominated by hadronic activity: w > 1:
 - $c_{1,2} > 0$
 - exact values depend on total cluster energy, choice of weighted unit (cell or cluster), . . .
- plot shows 30 GeV pions from 2002 EMEC–HEC test beam as a simple cluster weight example
 - restrict sample to pions fully contained in the EMEC
 - plot E_{beam} / E vs. E / V with E, V: cluster energy and volume, respectively
 - extract weight function
 - compare resolution for weighted and unweighted sample

H1 Weighting Method > Cluster Weighting

$$E'_{\text{sub-calo}} = w E_{\text{sub-calo}}$$

 $w = [c_1 \exp(-c_2 E_{\text{sub-calo}}/V_{\text{sub-calo}}) + c_3]$

- reconstruct "3D"-cluster
 - cluster definition follows in a couple of slides
- split the cluster in sub-calorimeter parts (e.g. EMEC/HEC)
 - because weights depend on intrinsic calorimeter properties
- apply cluster-energy dependent weights found in test beam as function of E_{sub-calo} / V_{sub-calo}
- tested on single particle test beam data and MC only
 - no straightforward extension to jets <u>;</u>
 - serves as a simple test case for H1 weighting
 - does not need any MC as input

H1 Weighting Method > Cell Weighting

$$E'_{\text{cell}} = w E_{\text{cell}}$$

$$w = \left[c_1 \exp\left(-c_2 E_{\text{cell}} / V_{\text{cell}}\right) + c_3 \right]$$

- reconstruct "3D"-cluster
- split the cluster around cells with high energy density
 - to separate electromagnetic from purely hadronic deposits
- apply cluster-energy and region (granularity, sub-calorimeter) dependent weights found in test beam as function of E_{cell}/V_{cell}
- tested (so far) on single particle test beam data and MC only
 - should be possible to extend the method to jets
 - drives the need for cluster classification of the split clusters

H1 Weighting Method > Cell Weighting with MC

$$E'_{\text{cell}} = w E_{\text{cell}}$$
 $w = \left(E^{\text{em}}_{\text{cell}} + E^{\text{non-em vis}}_{\text{cell}} + E^{\text{non-em invis}}_{\text{cell}} + E^{\text{escaped}}_{\text{cell}}\right) / \left(E^{\text{em}}_{\text{cell}} + E^{\text{non-em vis}}_{\text{cell}}\right)$

- start again with "3D"-clustering and splitting to define cluster-level quantities the weights might depend on
 - energy and energy density
 - cluster shape
 - distance of the cell from shower axis, ...
- production of detailed Geant4 simulations for the EMEC+HEC combined test beam 2002 has just started
- contains "calibration hits" in the 4 energy categories for
 - active material
 - absorber material
 - dead material
- some of the problems to solve for the weight definition:
 - active cells tend to be smaller in $\Delta\eta imes \Delta\phi$ than corresponding absorber cells
 - absorber not covered by read-out area is called dead material
 - need to find out which dead material area should be included in which read-out cell

Jets and Clusters

Clusters

- a group of calorimeter cells which are topologically connected
- often grouped around a seed cell with some large energy
- either fixed in size: SlidingWindow
- or dynamic: CaloTopoCluster
- should be the base for hadronic calibration

Jets

- a collection of 4-vectors based on tracks and/or calorimeter objects (CaloCells or CaloTowers or CaloClusters)
- defined by a metric on 4-vector level
- should only need calibration against double counting although hadronic calibration on jet level is still possible
- used for physics studies

Hadronic Calibration Group

decided to base hadronic calibration on CaloTopoCluster

Jets and Clusters > Electronics Noise and PileUp

- Clustering needs to cope with large cell-to-cell variations of
 - electronics noise
 - pile-up noise
 - granularity

- use conditions database to obtain
 - $\sigma_{
 m noise} = \sigma_{
 m elec-noise} \oplus \sigma_{
 m pile-up}$ for every channel in every event
 - use E/σ_{noise} for discrimination in topological clustering
 - use $\rho_{\perp} = E_{\perp}/V$ for definition of hot spots and topological re-clustering of previously found clusters

Jets and Clusters > Topological Cluster Maker

- CaloTopoClusterMaker makes CaloClusters from CaloCells in all Calorimeters
 - by grouping cells which are topological neighbors, where neighbors (defined in CaloIdentifier) can be
 - all2D: in the same layer and calorimeter
 - all3D: in the same calorimeter
 - super3D: anywhere across all calorimeters
 - with three Signal over Noise thresholds
 - CellThreshold: $|E/\sigma_{\text{noise}}| > T_{\text{cell}}$ (default $T_{\text{cell}} = 0$); only cells above this threshold are used
 - NeighborThreshold: $|E/\sigma_{\text{noise}}| > T_{\text{neighbor}}$ (default $T_{\text{neighbor}} = 3$); only cells above this threshold are asked for their neighbors
 - SeedThreshold: $E/\sigma_{\text{noise}} > T_{\text{seed}}$ (default $T_{\text{seed}} = 6$); only cells above this threshold initiate a cluster
 - with σ_{noise} being either
 - fixed; only useful for testing . . .
 - elec-noise from CaloNoiseTool (default)
 - elec-noise ⊕ pile-up-noise from CaloNoiseTool

Topological Cluster Maker ► Code

- CaloTopoClusterMaker since athena 8.2.0 is a CaloClusterMakerTool which is used by the generic CaloClusterMaker top algorithm
 - 1. loop over all CaloCells in the given CaloCellContainer(s)
 - a) make a vector of cells above cell threshold with IdentifierHash as index
 - b) create a proto-cluster for each cell above neighbor threshold
 - c) create a list (mySeedCells) for each cell above seed threshold and mark them used
 - 2. sort initial mySeedCells in E/σ_{noise} in descending order
 - 3. loop over mySeedCells
 - a) loop over the neighbors of the current cell
 - i. for neighbors above neighbor threshold merge proto-clusters; if not marked used do so and add to myNextCells
 - ii. neighbors below neighbor threshold not belonging to any proto-cluster are included in parent proto-cluster
 - 4. set mySeedCells = myNextCells
 - 5. return to 3. if mySeedCells is not empty
 - 6. keep proto-clusters with at least one cell above seed threshold

Topological Cluster Maker > Example Event

- ▶ Jet with $p_{\perp} > 70 \, \text{GeV}$, $|\eta| < 5 \, \text{in}$ EM barrel, Tile Barrel, Gap, & Extended Barrel
 - all plots show same $\Delta \eta \times \Delta \phi$ region
 - the color boxes denote the energy per cell in MeV on a log-scale (different scale for each plot)
 - 4 EM Barrel Layers
 - 3 Tile Barrel Layers
 - Tile Gap Scintillators
 - 3 Tile Extended Barrel Layers
 - all in one cluster

Jets and Clusters > Topological Cluster Splitter

- CaloTopoClusterMaker makes clusters across all Calorimeters (LArNeighbourOption::super3D)
 - based on Signal over Noise thresholds
 - and topological neighbors
- Classification requires identification of "Hot-Spots"
 - need to split clusters around local maxima in real physical observable
 - transverse cell energy density $\rho_{\perp} = E_{\perp}/V$ seems best
- CaloTopoClusterSplitter re-clusters each existing cluster into one or more clusters
 - around the local maxima above a seed threshold

■ Hadronic Energy Calibration ►

- with same (or different) topological neighbors
- without cell or neighbor thresholds
- keeping local maxima in separate clusters
- with ρ_{\perp} ordered seeds in every iteration

Topological Cluster Splitter Code

- present in offline releases since athena 8.2.0
- CaloTopoClusterSplitter is a CaloClusterMakerTool like CaloTopoClusterMaker
 - 1. loop over all CaloCell members of all previously made CaloClusters
 - a) store all cells as potential neighbor cells for topological clustering; the parent cluster is kept as a reference such that only cells within the same parent cluster can be re-clustered together
 - b) create a proto-cluster for each cell
 - c) keep as seed cells those which are a local max ($\rho_{\perp} > 500 \, \text{MeV/} (600000 \, \text{mm}^3)$, $\rho_{\perp} > \text{max} \{ \rho_{\perp}, \text{neighbors} \}$, $N_{\text{neighbors}} \geq 4$)
 - 2. sort current seed cells in descending order in ρ_{\perp} and mark them used
 - 3. loop over the current seed cells
 - a) loop over the neighbors of the current seed cell
 - i. include the neighbor cell in current proto-cluster if it is not a local max itself, does not belong to a proto-cluster of size > 1, and does belong to the same parent cluster
 - ii. add the neighbor cell to the list of next seed cells if it is not marked used and mark it used
 - 4. copy the list of next seed cells to the current list
 - 5. iterate (starting at step 2) until list of current seed cells is empty
 - 6. copy all cells of parent clusters not re-clustered in separate clusters (one per parent cluster)
 - 7. remove all original CaloClusters and create new CaloClusters from the local max proto-clusters and the rest proto-clusters
- switched on by default as specified in CaloRec/CaloTopoCluster_jobOptions.py

Topological Cluster Splitter > **Example Event**

- ▶ Jet with $p_{\perp} > 70 \, \text{GeV}$, $|\eta| < 5$ in EM, HEC, FCal
- Parent Cluster before splitting

- EMEC has only 2 layers in this region
- EMEC3 neighbors HEC1
- HEC1 overlaps with the front of FCal1
- rear faces of FCal1 and 2 neighbor HEC3 and 4
- all 9 layers belong to the same cluster
- at least 4
 potential local
 maxima visible

Topological Cluster Splitter > Example Event > after Splitting

same Cluster after splitting

- different sub-clusters denoted by different box colors
- 7 local maxima were found in the parent cluster
- sub-clusters are also crossing system boundaries
- $\begin{array}{c} \bullet \quad \text{single } \gamma \\ \quad \text{clusters remain} \\ \quad \text{un-split} \end{array}$

EMEC & HEC combined beam test 2002 > Setup

- H6 beam area at the CERN SPS
 - $6 \le E \le 200 \, \mathrm{GeV}$ $\mathrm{e}^{\pm}, \mu^{\pm}, \pi^{\pm} \, \mathrm{beams}$
 - 90° impact angle (unlike ATLAS)
 - Scintillators for trigger and timing
 - 4 MWPCs with horiz. and vert. layers upstream
 - Optional additional material upstream
- Main goals for the beam test
 - study the region $\eta \sim$ 1.8
 - obtain calibration constants for e and π
 - compare to detailed MC in order to extrapolate to jets
 - test methods for an optimal hadronic energy reconstruction

Signal reconstruction > Digital filter

- Optimal filtering principle:
 - need known physics signal shape g(t)
 - discrete measurements (signal plus noise): $y_i = Eg_i + b_i$
 - and autocorrelation matrix from noise runs: $B_{ij} = \langle b_i b_j \rangle \langle b_i \rangle \langle b_j \rangle$
 - estimate amplitude E with $\tilde{E} = a^t y$ from minimization of $\chi^2(E) = (y Eg)^t B^{-1} (y Eg)$
 - solution is given by OF weights $a = \frac{B^{-1}g}{g^tB^{-1}g}$
- ightharpoonup Biggest problem: how to get g(t)?
- ► HEC:
 - measure or fit all parameters of the electronics chain
 - convolution with calibration pulse gives shaping times
 - convolution with predicted physics shape has only one free parameter (drift time)
 - accuracy ±1.5 %

EMEC:

- electronics chain too complicated (incomplete)
- HEC procedure would give only $\pm 4 \%$ accuracy
- treat transfer function as completely unknown
- measured calibration output in freq. domain plus known physics- and calibration-pulse transforms are enough to predict the physics output
- accuracy < 2 %

Signal reconstruction ► Digital filter ► HEC

- Calibration pulse fit example
 - upper plot shows calibration signal and fit for one channel
 - $au_i = 43.2 \pm 0.1$ ns and $au_s = 14.20 \pm 0.02$ ns are fitted

- lower plot shows residual deviation from data < 1.5 %
- Physics signal prediction

- upper plot shows normalized physics signal and prediction for one channel
- lower plot shows residual deviation from data < 1.5 %
- noise reduction factor with 5 weights 0.64 (0.72) for HEC (EMEC)

Signal reconstruction > Calibration in nA

- Calibration from ADC to nA
 - use the OF weights found before
 - reconstruct the amplitudes for the calibration DAC level scans
 - fit the amplitude with a 3rd order polynomial to obtain calibration coefficients ADC → nA
 - accuracy < 0.5 %

EMEC & HEC combined beam test 2002 > Topological Clustering

- Event display for a 120 GeV pion in nA
- Cell-based topological nearest neighbor cluster algorithm
 - Clusters are formed in 2D
 - Seed cut $E/\sigma_{\text{noise}} > 4$
 - Include cells neighboring cluster members with $|E/\sigma_{
 m noise}| > 3$
 - Cell cut $|E/\sigma_{\text{noise}}| > 2$
 - Iterate
- Neighbor means common edge

Energy calibration Electromagnetic scale for EMEC

- $\sim lpha_{
 m em}^{
 m EMEC} = 0.430 \pm 0.001 \,
 m MeV/nA$
 - linearity good to $\pm 0.5 \%$
 - well reproduced by MC
- cluster leakage available in MC and data

- plot shows data, Geant3 and Geant4
- well modeled by the MC (2 4 % leakage at high energies)
- MC shows smaller (4 10 %)
 leakage than data (5 12 %) at low
 energies

Energy calibration Response to pions

- No electrons in HEC only
 - Electromagnetic scale from previous HEC stand-alone TB
 - Modified by new electronics
 - Calculated value: $\alpha_{\rm em}^{\rm HEC}=3.27\,{\rm MeV/nA}$
- Response to 200 GeV pions in data and MC on em-scale
 - upper plot shows EMEC
 - lower plot shows HEC
 - Geant3 and Geant4 QGSP describe data reasonably well
 - Geant4 LHEP deviates substantially

Energy calibration Cluster weights

Cluster weights are found by minimizing: $\chi^2 =$

$$\sum_{\text{events}} \frac{\left(E_{\text{beam}} - E_{\text{leak}}^{\text{HEC}} - E_{\text{tot}}^{\text{EMEC}} - E_{\text{reco}}^{\text{HEC}}\right)^2}{\sigma^2} + \frac{\left(E_{\text{beam}} - E_{\text{leak}}^{\text{EMEC}} - E_{\text{tot}}^{\text{HEC}} - E_{\text{reco}}^{\text{EMEC}}\right)^2}{\sigma^2}$$

- $E_{\text{reco}} = E_{\text{em}} \left(c_1 \cdot \exp \left[-c_2 \cdot E_{\text{em}} / V \right] + c_3 \right)$ (H1 method)
- $E_{\text{tot}} = E_{\text{reco}} + E_{\text{em}}^{\text{cluster leak}}$
- $E_{\text{leak}}^{\text{EMEC (HEC)}}(E_{\text{em}}^{\text{EMEC (HEC)}}/V^{\text{EMEC (HEC)}})$ from MC
- c₂ fixed to 1000 cm³/GeV (1500 cm³/GeV) for EMEC (HEC)
- upper (lower) plot shows E_{reco}/E_{em} for EMEC (HEC)

Energy calibration > Resolution for pions

- $ightharpoonup \sigma_E/E$ (%) noise subtracted
 - data: $\frac{84.1 \pm 0.3}{\sqrt{E/\text{GeV}}} \oplus 0.0 \pm 0.3$
 - noise: $\sigma_{\text{noise}}/E \simeq 1-1.5\,\text{GeV}/E$

- Geant3 and all Geant4 models give similar results
- ightharpoonup combined e/π ratio
 - shows total E_{reco}/E_{em}
 - indicates the amount of non-compensation
 - fitted e/h-ratios for combined HEC and EMEC have no direct interpretation

Energy calibration Cell Weighting with MC

$$E_{\text{cell}}' = w E_{\text{cell}}$$

$$w = \left(E_{\text{LAr+Abs}}^{\text{em}} + E_{\text{LAr+Abs}}^{\text{non-em vis}} + E_{\text{LAr+Abs}}^{\text{non-em invis}} + E_{\text{LAr+Abs}}^{\text{escaped}}\right) / \left(E_{\text{LAr}}^{\text{em}} + E_{\text{LAr}}^{\text{non-em vis}}\right)$$

- start with "3D"-clustering and splitting to define cluster-level quantities the weights might depend on
 - energy and energy density
 - cluster shape
 - distance of the cell from shower axis, ...
- for test beam data use sum of "2D"-clusters "3D"-cluster
- take cluster energy on EM scale as start value
- interpolate weights from MC according to cluster energy
- apply cell weights and re-calculate cluster energy
- iterate

Cell Weighting with MC > Choice of Variables

- the choices for the denominator in the weight basically are:
 - 1. include the absorber in the denominator: $w \sim 1/E_{\text{LAr+Abs}}^{\text{em + non-em}}$
 - 2. use only the liquid argon part: $w \sim 1/E_{\rm LAr}^{\rm em + non-em}$
 - 3. use the "reconstructed" liquid argon part: $w \sim 1/E_{\rm rec}$
- for the HEC alone choice 2 and 3 are equivalent and differ by the constant sampling ratio only
- for the EMEC choice 2 is not possible because the sampling ratio varies with η
- we tried choice 1
 - theoretical electron weights are 1
 - no dependency on sampling ratios
 - gives biased results due to mismatch with reconstructible energy
- this leaves us with choice number 3

Cell Weighting with MC > Avoiding Bias

- compare the reconstructed cell energy with total visible cell energy (LAr+Abs) for 200 GeV pions
- shows the variation in the sampling ratio (this quantity is constant for dE/dx only)
- most probable value is 1 but large positive tails shift mean to higher values
- results in over-weighting when cell weights are calculated from total visible cell energy
- upper plot shows EMEC
- lower plot shows HEC

Cell Weighting with MC ► Choice of *x*-Axis

- We tried many choices for the x-axis
 - function of

 E^{w/wo noise} / V_{cell} for
 every layer
 - scaled by 1/E_{beam} or 1/log E_{beam} for better interpolation
 - modified by (optional) non-linear terms
 - plots show weights
 vs. 1/log E_{beam} scaled energy
 density without noise
 for the three EMEC
 layers (left) and the
 three HEC layers
 (right) at point J

Cell Weighting with MC > Compare to NIM paper weights

For the NIM paper we fitted cell weights for EMEC and HEC by minimizing

$$\chi^{2} = \sum_{\text{events}} \frac{(E_{\text{beam}} - E_{\text{leak}} - E_{\text{reco}})^{2}}{\sigma_{\text{noise}}^{2} + \sigma_{\text{leak}}^{2}}$$

• with
$$E_{\text{reco}} = \sum_{i=1}^{N_{\text{weights}}} w_i \sum_{\substack{\text{cells with} \\ \rho_i \leq \rho < \rho_i + 1}} E_{\text{cell}}$$

- 25 weights for HEC per energy point
- 25 weights for EMEC per energy point
- fit was performed for every beam energy separately
- $ightharpoonup \sigma_{\text{noise}}$ was not weighted
- comparison plots show weights for 200 GeV pions
 - NIM paper weights are in black
 - upper plot shows EMEC weights
 - lower plot shows HEC weights

Application of the Weights to Data and MC $\triangleright \pi^-$

- the following plots are for $x = E_{\text{cell}}^{\text{with noise}} / V_{\text{cell}} \times 1 / \log E_{\text{clus}}$
- ightharpoonup examples show (normalized) cluster energies for 80 GeV π^- before and after the weighting iteration
 - in red before the iteration (em)
 - in blue after the iteration (w)
 - usually 2 iterations are enough

Application of the Weights to Data and MC $\triangleright \pi^- \triangleright$ Resolution

- Iterative procedure at point J including noise yields:
 - data: $\sigma_E/E = 89.8 \, \%/\sqrt{E \, (\text{GeV})} \oplus 3.5 \, \%$
 - MC: $\sigma_E/E = 73.8 \% / \sqrt{E \text{ (GeV)}} \oplus 3.9 \%$
- weighted energy matches true total deposited energy in the cluster for MC (plot not shown)
- beyond 40 GeV improved resolution after weighting <a>i
- below 40 GeV weighting corrects the scale only
- have a look at electrons to estimate influence on pure electromagnetic cluster regions on the next slide

Application of the Weights to Data and MC > e

- apply same procedure to (MC) electrons
- this will show how large the bias is for pure electromagnetic showers
 - resolution gets worse
 - scale is off for low energies but o.k. for high energies
 - example shows 20 GeV and 148 GeV electrons

Application of the Weights to Data and MC ► e⁻ ► Resolution

resolution

- worse after weighting as expected
- probably tolerable since we've to be concerned about electromagnetic parts of hadronic showers only

bias

- as high as 15 % for 10 GeV
- vanishes beyond 40 GeV

Roadmap to ATLAS

- Calibration Hits from Geant4 MC will give the calibration constants for hadronic calibration
 - compare MC with EMEC/HEC/FCAL and EMB/Tile 2004 combined test-beams
 - extend method to full ATLAS simulation
- port single particle calibration to jets
 - requires cluster splitting and identification
 - should not require new constants if previous step is successful
- \triangleright cross-check with p_{\perp} -balance
 - form all cells in one η -region (similar to total missing E_{\perp} studies)
 - form $Z^0 \rightarrow e^+e^-/\gamma + jet$ events
 - possibly introduces bias from trigger/ID performance

Conclusions

- Hadron calorimetry in ATLAS requires
 - topological clustering to identify "hot spots" and set the energy scale
 - H1 type weighting
 - works on cluster- and cell-level in test beam
- Detailed new Geant4 MC with "calibration hits"
 - first look at MC looks promising
 - will be used for cell-level H1 weighting
- Hadronic Calibration is cross-checked in situ
 - with p_{\perp} -balance for entire η -rings form minimum bias events
 - with p_{\perp} -balance of Z^0/γ + jet events

