Calorimetry: Requirements and Technology Challenges

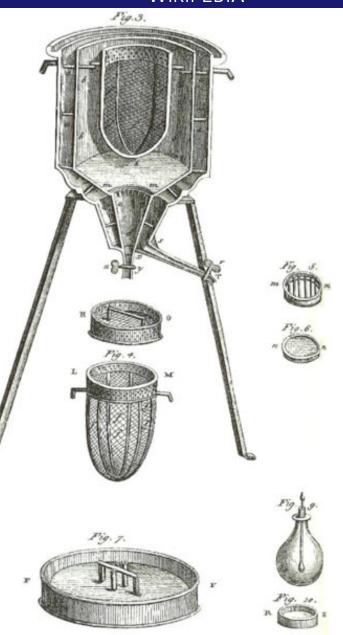
17th Terascale Detector Workshop

Sven Menke, MPP München

Introduction

- Calorimetry
- Electromagnetic showers
- Hadronic showers
- Calorimetry at the FCC-ee
 - FCC-ee physics and requirements
 - Detectors
 - CLD
 - IDEA
 - ALLEGRO
 - Calibration
- Conclusions

19 Mar 2025, University of Bonn



MAX-PLANC

What is a calorimeter?

- If you ask this question on WIKIPEDIA you get to see devices like the one shown here from 1782 by A. Lavoisier and P.-S. Laplace
- i.e. devices to measure the heat of chemical reactions or physical changes or to measure heat capacity
- Not quite what we do in particle physics ...

1789 Elements of Chemistry

WIKIPEDIA

Ice-calorimeter from Antoine Lavoisier's

Introduction Calorimetry

What is a calorimeter in high energy particle physics?

In our experiments we want a calorimeter to measure:

- the energy of a final state particle in a destructive way
 - thereby stopping the particle from entering detectors further out from the interaction region
- where that particle is depositing its energy
 - to combined it with other particles and measurements
- the type of the particle
 - electro-magnetic, hadronic or muonic
- when that particle deposited its energy
 - to exclude reactions from background processes and to detect new long-lived particles

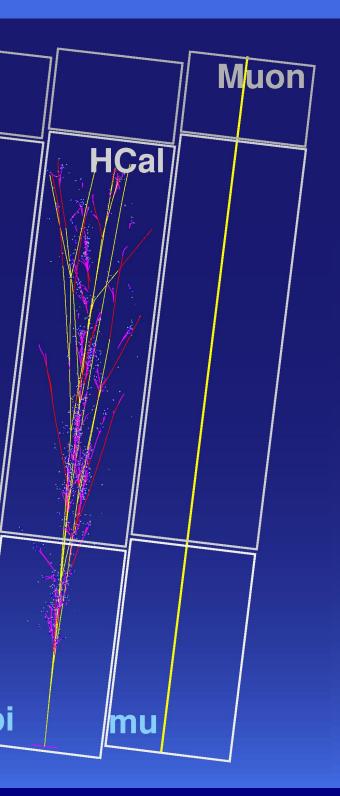
Only one requirement (the first about the energy) has actually to do with heat

• still, we don't actually measure the heat increase by the particle ...

All other requirements mean that we can not exclusively optimise for energy resolution

still, we want to have the best energy measurement that does not compromise the other goals

All the requirements are interdependent


Calorimetry: Requirements and Technology Challenges S. Menke, MPP München 17th Terascale Detector Workshop, 19 Mar 2025, University of Bonn

- electrons and photons are detected in the first part of the calorimeter (the electromagnetic calorimeter) by their electromagnetic showers
 - electrons also leave a track in the inner detector

charged pions, neutrons and protons cause hadronic showers and are detected in both, the first (electromagnetic) and second (hadronic) part of the calorimeter

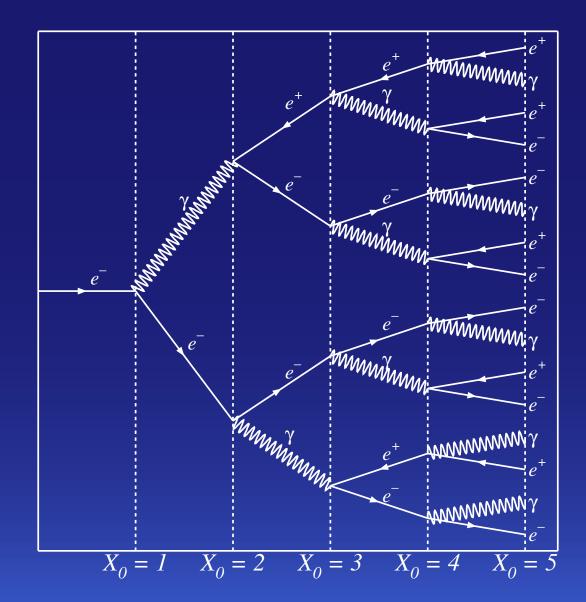
- the charged pions and protons also leave a track in the inner detector
- muons do not initiate a shower and deposit ionising energy only, without being destroyed (stopped)
 - leave a track in the inner detector
 - and reach beyond the calorimeter to leave tracks in the muon system
- neutrinos do not interact (sufficiently) and escape
- Image shows simulation of three 50 GeV particles (electron, charged pion and muon) hitting steel
 - with all charged particles coloured proportional to their energy

FCa

Introduction **>** Electromagnetic showers

Simplified electromagnetic shower model (Rossi)

- an electron with energy E_0 hits the calorimeter
- each electron/positron radiates a bremsstrahlungs-photon after exactly one radiation length with half its energy
- each photon converts after one radiation length in a e^+e^- pair with half the photon energy each
- after t radiation length the shower contains 2^t particles (e⁺, e⁻, γ with roughly similar abundances) each with the energy $E_0 / 2^t$
- once the energy falls below a critical threshold $E_0 / 2^t < E_c$ the shower terminates
 - energy loss becomes larger than losses from Bremsstrahlung
 - for photons Compton-scattering becomes larger than pair-production
- $t_{\text{max}} = \ln(E_0 / E_c) / \ln 2$
 - \blacktriangleright the shower depth is proportional to the logarithm of the original energy E_0


\triangleright $E_{\rm c} \simeq O(10 \,{\rm MeV})$ for typical calorimeter materials

- an em-shower with $E_0 = 100 \text{ GeV}$ has $E_0 / E_c = 10000$ particles
 - number of particles at shower maximum is proportional to energy E_0

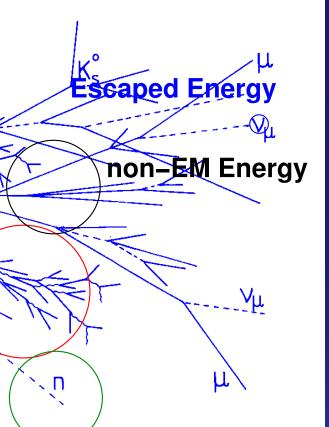
its shower maximum is located at a depth of $t_{\rm max} X_0 = X_0 \ln(E_0 / E_c) / \ln 2 = 13.3 X_0$

• the shower depth grows proportional to $\ln E_0$

- In hadronic showers the nuclear interaction length (λ) takes the role the radiation length (X_0) has for em showers
 - $\lambda \simeq O(10) X_0$ for typical calorimeter materials

A hadronic shower consists of

- EM energy (e.g. $\pi^0 \rightarrow \gamma \gamma$) O(50 %)
- visible non-EM energy (e.g. dE / dx from π^{\pm}, μ^{\pm} , etc.) O(25 %)
- invisible energy (e.g. breakup of nuclei and nuclear excitation) O(25%)
- escaped energy (e.g. ν) O(2%)•


each fraction is energy dependent and subject to large fluctuations

- invisible energy is the main source of the non-compensating nature of hadron calorimeters
- need to account for this either by construction (hardware compensation) or by hadronic calibration

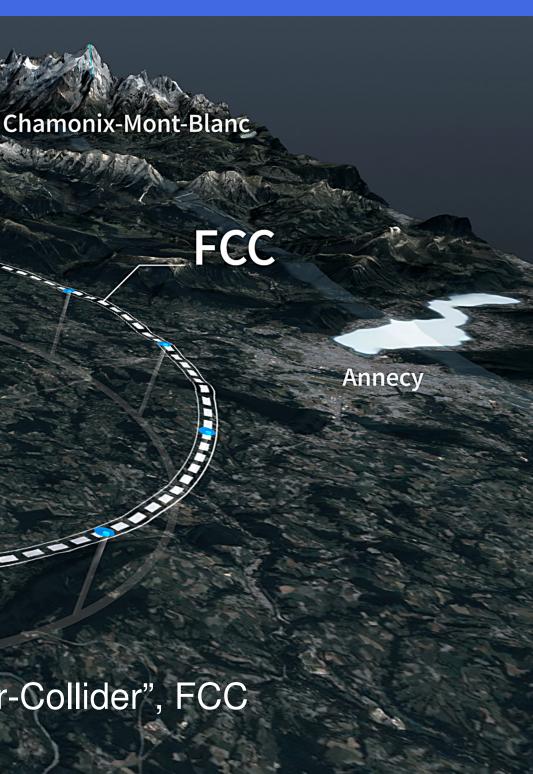
Calorimetry: Requirements and Technology Challenges S. Menke, MPP München

Invisible Energy

Electromagnetic Energy

FCC-ee

SUISSE

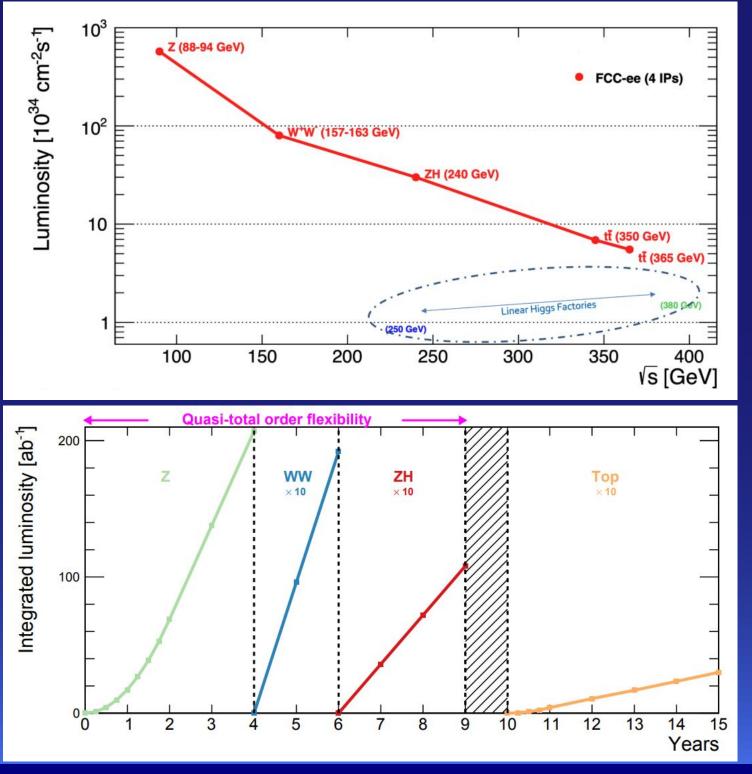

Genève

Concept of the \sim 90 km long "Future-Circular-Collider", FCC

S. Menke, MPP München

Calorimetry: Requirements and Technology Challenges

17th Terascale Detector Workshop, 19 Mar 2025, University of Bonn

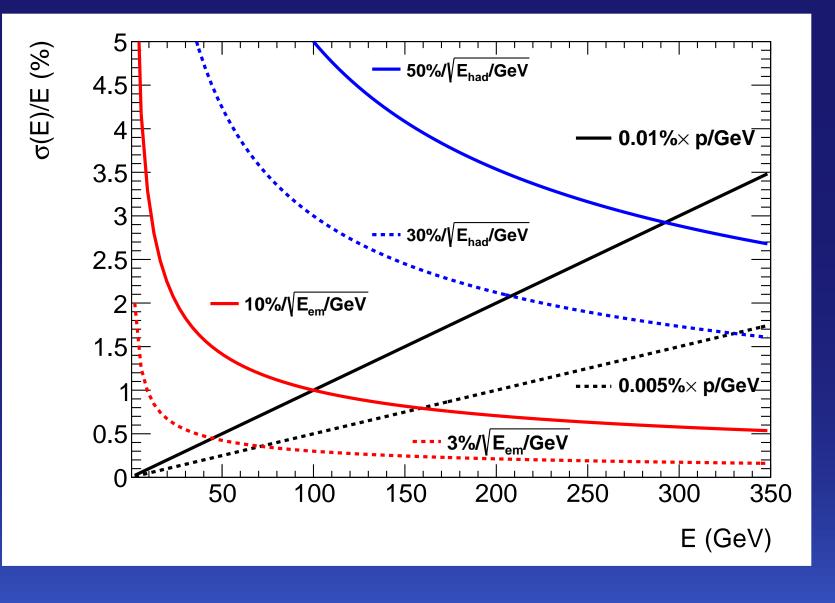


FCC-ee Physics

- > \sim 90 km circular e⁺e⁻-collider
- 4 interaction regions
- physics at the Z-pole, WW-, ZH- and tt-threshold
 - 6×10^{12} Z
 - 2.4×10^8 WW
 - $1.5 \times 10^5 \text{ ZH}$
 - $2 \times 10^6 \text{ t}\overline{\text{t}}$

highest lumi at the Z with O(100 kHz) trigger rate

• entire LEP-1 program (O(6 M) hadronic Z for each experiment) every \sim 2 minutes



e⁺e⁻-collisions mean moderate energy

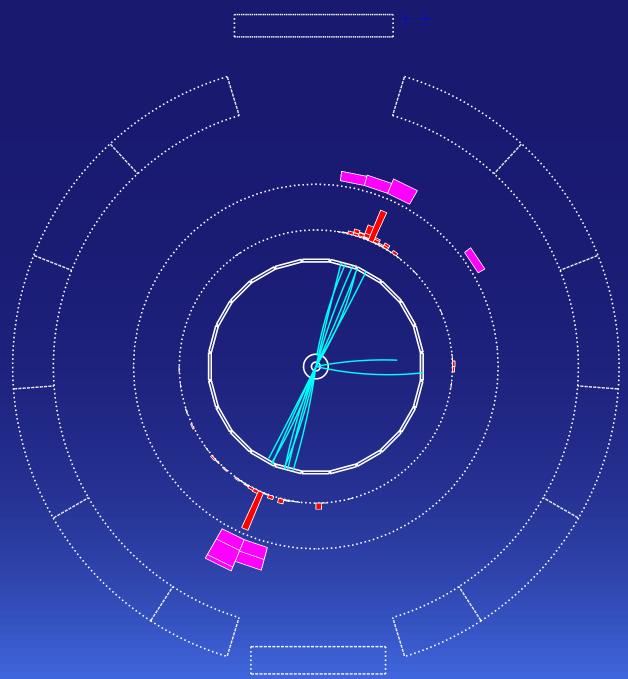
- up to O(100 GeV), not several TeV as for LHC
- Improving on the LEP-results for Z-physics and measuring the Higgs-couplings requires extremely high precision measurements
 - design detectors with ParticleFlow in mind
 - use tracker for any charged particle with E < O(50 GeV)
 - be able to separate the calorimeter signals from these charged particles from the neutral (hadronic) deposits
 - need high transverse and longitudinal granularity in the calorimeters
 - separating γ from $\pi^0 \rightarrow \gamma \gamma$ is needed for example for hadronic τ -decays
 - need even higher transverse granularity in the em-calorimeter

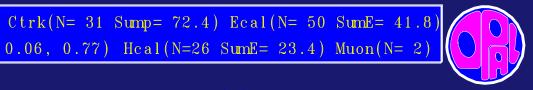
With trigger rates of O(100 kHz) at the Z-pole, the readout does not need to be particularly fast

- but bunch crossings are only O(20 ns) apart
- so, still need accurate time resolution

FCC-ee Physics requirements

\blacktriangleright Z⁰ \rightarrow hadrons


- \sim 33 particles
- \sim 20 of them charged
- \sim 10 neutral pions (and other mesons decaying directly to $\gamma\gamma$)
- \sim 3 neutral hadrons (n,K_I)


distributing the energy evenly over them in two jets

- $E_{\text{jet}} = (60.6\%_{\text{track}} + 30.3\%_{\text{em}} + 9.1\%_{\text{had}})E_{\text{jet}}$
- $E_{\text{jet}} = 10 \times 2.76 \text{ GeV}_{\text{track}} + 13.82 \text{ GeV}_{\text{em}} + 4.15 \text{ GeV}_{\text{had}}$
- $\Delta E_{\text{jet}} / E_{\text{jet}} = 0.005\% \oplus 0.8\% \oplus 2.2\% = 2.4\%$ with ParticleFlow compared to
- $\Delta E_{jet} / E_{jet} = 0.8\% \oplus 6.2\% = 6.2\%$ without
- $\sqrt{2} \times 2.4\% = 3.4\%$ Z-mass resolution (vs. $\sqrt{2} \times 6.2\% = 8.8\%$)

```
Image shows Z \rightarrow hadrons event from OPAL
(LEP-1, not a ParticleFlow optimised
detector)
```

Run:event 5060: 1004 Ebeam 45.619 Vtx (0.03, 0.06, 0.77) Hcal(N=26 SumE= 23.4) Muon(N= 2)

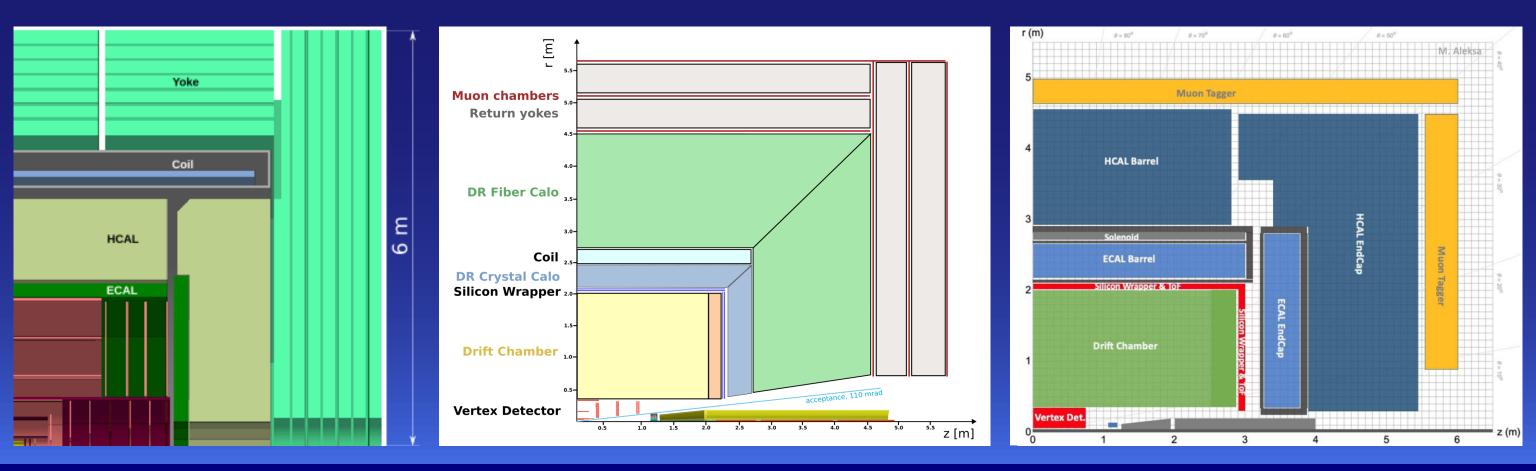


FCC-ee Physics requirements

	Reco		$\pi^{\pm}\pi^{0}$	$\pi^{\pm}2\pi^{0}$	$\pi^{\pm} 3 \pi^{0}$	
$\succ \tau \rightarrow \nu_{\tau}$ + hadrons	Gen					
 1, 3 or 5 charged pions (or kaons) 0 - 4 neutral pions 						
 need to separate the final states according to number of neutral pions even number of charged + neutral pions: vector current odd number of charged + neutral pions: axial-vector current 	$\pi^{\pm}\pi^{0}$		82%	17%	1%	
	$\pi^{\pm}2\pi^{0}$		26%	65%	9%	
	$\pi^{\pm} 3 \pi^{0}$		8%	57%	35%	
> channel cross-feed for $ au o u_{ au} \pi^{\pm} + N \pi^0$ for					S.Menk	e, PhD-thesis
OPAL (top) and a FCC LAr ECAL simulation (bottom)	Reco Gen	π^{\pm}	$\pi^{\pm}\pi^{0}$	$\pi^\pm 2\pi^0$	$\pi^{\pm}3\pi^{0}$	$\pi^{\pm}4\pi^{0}$
 need high granularity to separate 	π^{\pm}	95.6%	4.3%	0.1%	0	0
close-by em showers	$\pi^{\pm}\pi^{0}$	3.7%	90.2%	5.9%	0.2%	0
 and only little material in front of the 	$\pi^{\pm}2\pi^{0}$	0.9%	12.8%	78.0%	8.1%	0.2%
calorimeter	π^{\pm} 3 π^{0}	0.4%	3.7%	26.8%	59.7%	9.1%
K.Wandall-Christensen, Master-thesis						
S. Menke, MPP München Calorimetry: Requirements and Technology Challenges 17th Terascale Detector Workshop, 19 Mar 2025, University of Bonn 11 						

FCC-ee Detector Concepts

CLD

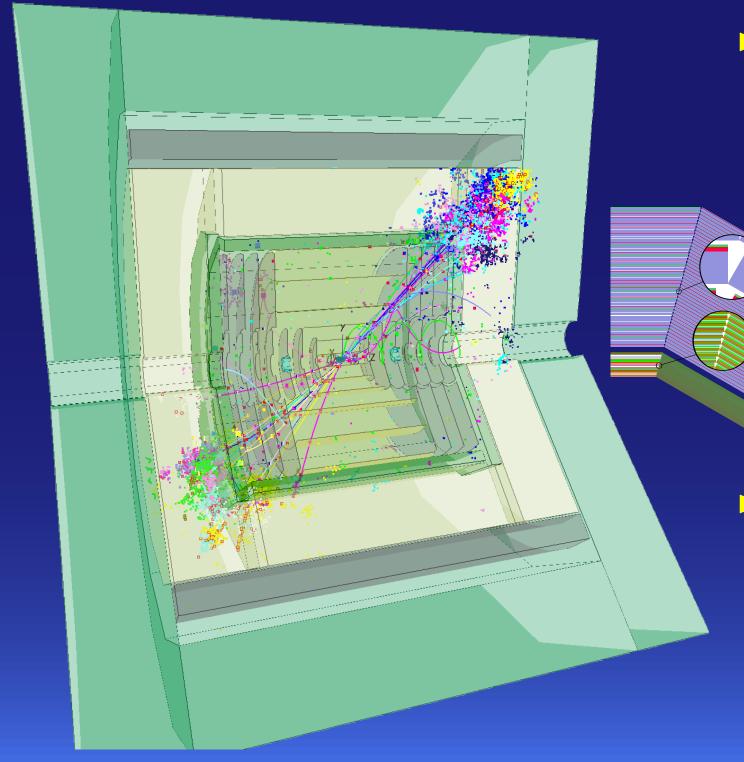

- arXiv:1911.12230
- based on CLIC detector design
- Full Si vertex detector and tracker
- coil outside calorimeters
- 3D-imaging high-granular calorimeter

IDEA

- arXiv:2502.21223
- Si vertex detector
- lightweight drift chamber with Si wrapper •
- Dual-readout 2-layer EM crystal • calorimeter in front of coil
- Dual-readout fibre-metal HAD sampling calorimeter

ALLEGRO

- arXiv:2109.00391
- adapted from FCC-hh concept
- **IDEA-like tracker**
- high granular liquefied noble gas EM sampling calorimeter inside solenoid
- metal-scintillator tile HAD calorimeter



S. Menke, MPP München

Calorimetry: Requirements and Technology Challenges

17th Terascale Detector Workshop, 19 Mar 2025, University of Bonn

FCC-ee Detectors > CLD

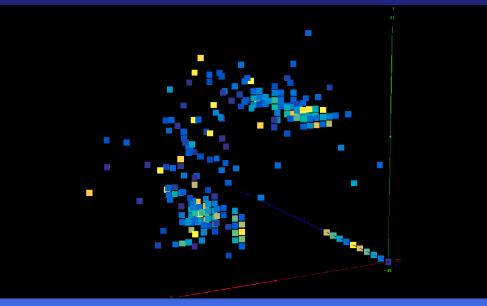
► HCAL

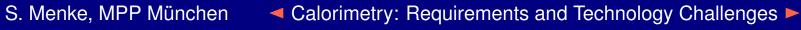
- 44 sampling layers of 26.5 mm with 19 mm Fe-absorbers and 3 mm scintillator-readout $(\simeq 5.5 \lambda)$
- transverse granularity $30 \times 30 \text{ mm}^2$ (4 $\times 10^6$ barrel + 5.2×10^6 endcap channels)

ECAL

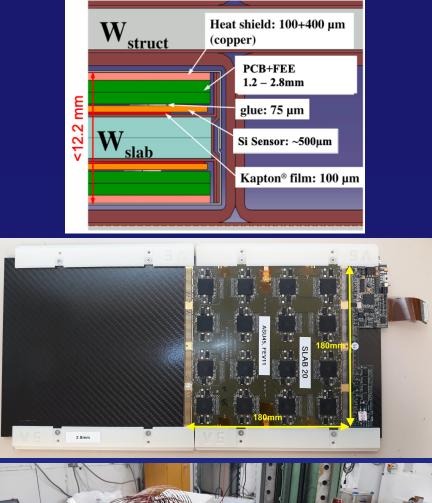
- 40 sampling layers of 5.05 mm with 1.9 mm W-absorbers and 500 μ m Si-readout (\simeq 22.5 X_0)
- transverse granularity $5 \times 5 \text{ mm}^2$ (99 $\times 10^6$ barrel + 59 \times 10⁶ endcap channels)

FCC-ee Detectors CALICE SiW ECAL


CALICE SiW ECAL: a prototype for the CLD ECAL

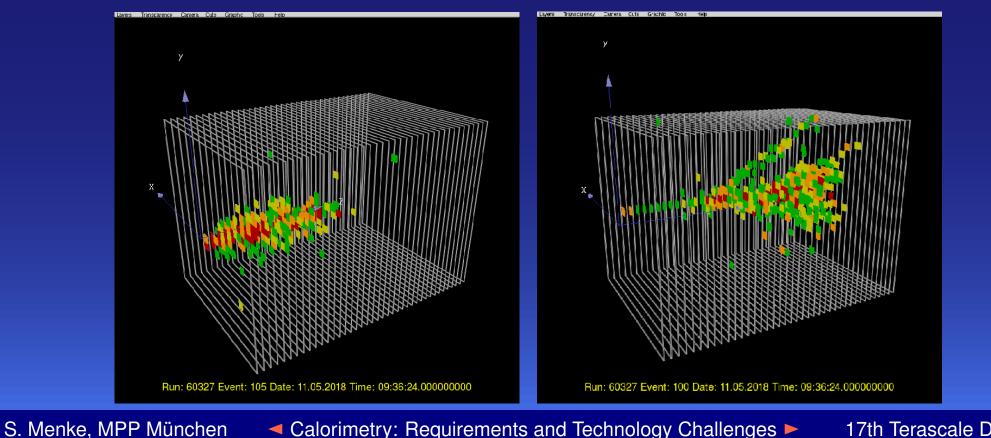

- The CALICE collaboration tested several high granular absorber/readout options mainly for future linear e⁺e⁻ colliders
- a 15 layer SiW prototype with 15360 cells
- active electronics (SKIROC2a) with 64 channels, variable gain amplification, 12-bit ADC and 15-signal deep Switched Capacitor Array
- on-chip zero suppression: only signals above a threshold are sent to the ADC
- 1.5 mW per channel in continuous mode

Challenges


- uniformity: need calibration/monitoring of O(100 M) channels
- power: without pulsed operation need cooling for the electronics O(150 kW) for 100 M channels

Excellent shower separation demonstrated

arXiv:2211.07457


FCC-ee Detectors ► CALICE AHCAL

CALICE AHCAL: a SiPM-on-tile calorimeter prototype

- 38 active layers of 36 \times 36 cm² holding 144 3 \times 3 cm² SiPMs controlled by 4 SPIROC2E ASICs
- 21888 channels again in pulsed-power operation mode (likely needs adjustment for FCC-ee)
- Hamamatsu MPPC S13360-1325PE photon sensors in the centre dimple of polystyrene scintillator tiles
- self-triggering

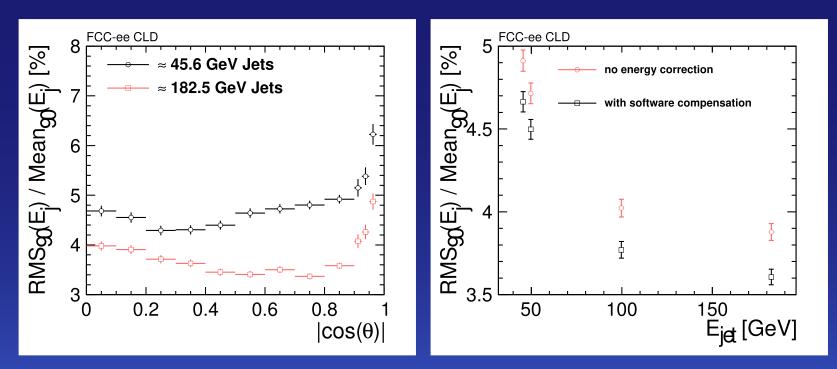
em/had separation

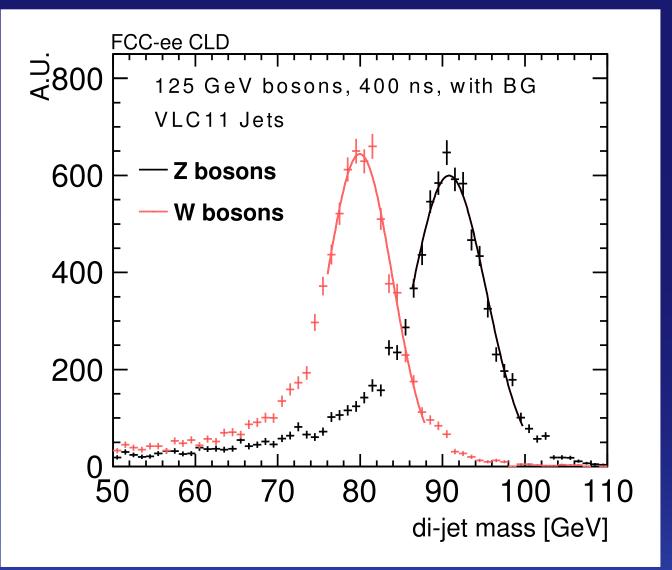
- is key for any ParticleFlow algorithm
- electron shower (left) is compact with high energy density
- hadron shower (right) has larger spread and low energy density

Calorimetry: Requirements and Technology Challenges

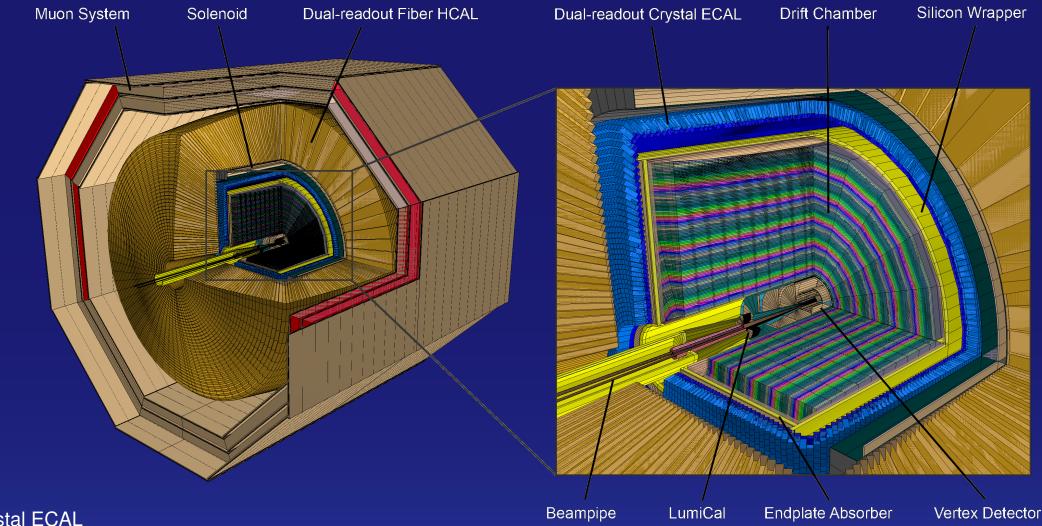
17th Terascale Detector Workshop, 19 Mar 2025, University of Bonn

arXiv:1808.09281


FCC-ee Detectors ► CLD Jet Performance


Jet energy resolution for CLD using PandoraPFA (See e.g. doi:10.1016/j.nima.2012.10.038)

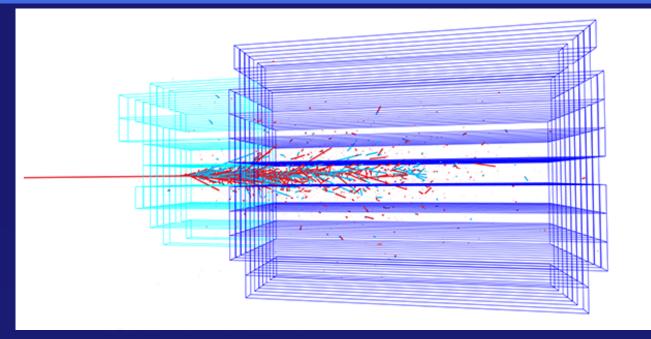
- up to 4.5% resolution for hadronic jets at the Z-pole
- software compensation (since e / h > 1) improves resolution by 5 7.5%

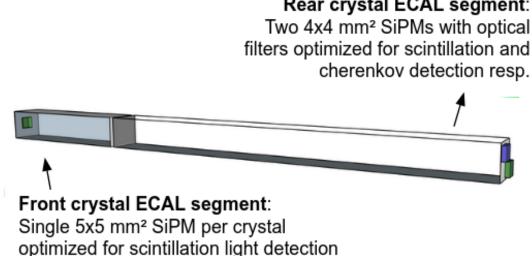

W / Z separation

- 125 GeV boson energy with incoherent pair-background at 365 GeV
- 2.5 σ separation •

FCC-ee Detectors IDEA

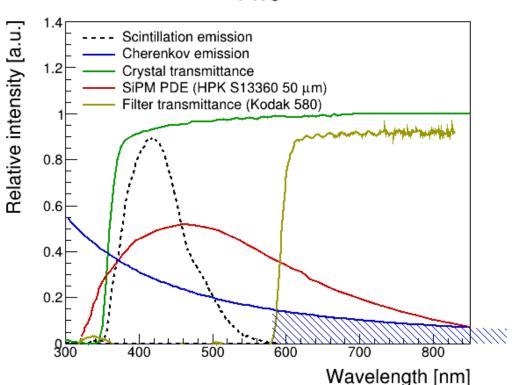
ECAL


- 2 layer crystal ECAL
- $10 \times 10 \text{ mm}^2$, $6X_0$ (front, E1) and $16X_0$ (back, E2) with 1 SiPM per crystal in E1 and 2 SiPM per crystal in E2 (dual readout)
- 1.36×10^6 (barrel) and 0.25×10^6 (endcap) crystals


HCAL

- single layer dual readout fibre in metal sampling calorimeter
- 60×10^6 (barrel) plus 20×10^6 (endcaps) fibres each with one SiPM 8 SiPM feed one readout channel
- Iongitudinal info possibly by timing

arXiv:2502.21223


FCC-ee Detectors F IDEA ECAL

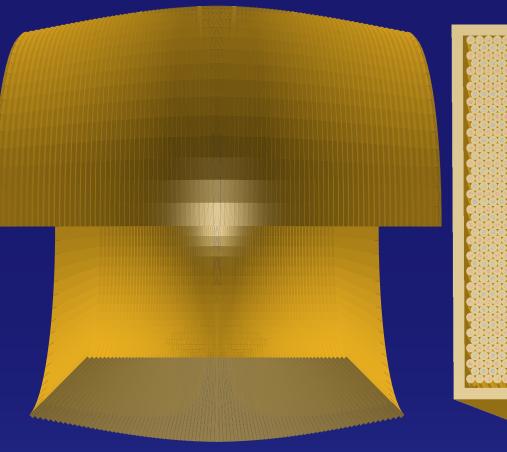
Dual readout crystal ECAL with 2 longitudinal layers

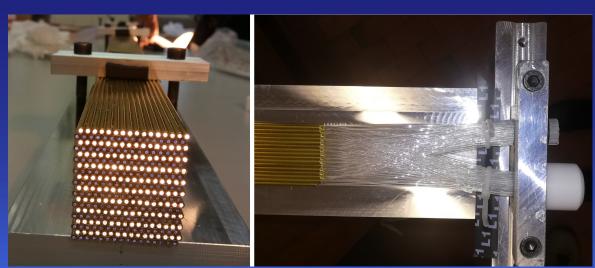
- scintillation light (S) is created by both, relativistic (e^{\pm}) and non-relativistic (hadronic) particles
- Čerenkov light (C) is created by relativistic (e^{\pm}) particles only
- single front SiPM collects mainly S (negligible amount of early showering hadrons)
- 2 rear SiPM collect either Čerenkov light only (optical filter blocks scintillation light) or both S+C
- allows to measure fluctuating em-component in hadronic showers \blacktriangleright to make e / h = 1

arXiv:2502.21223

Rear crystal ECAL segment: Two 4x4 mm² SiPMs with optical cherenkov detection resp.

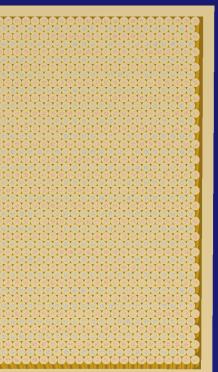
PWO

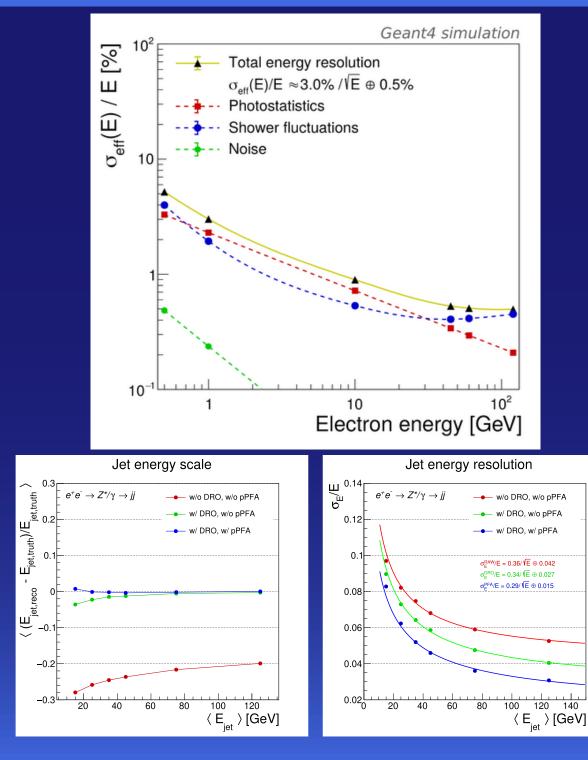

FCC-ee Detectors IDEA HCAL


Dual readout fibre HCAL

- originally the only calorimeter for IDEA
- decades of R&D by the DREAM collaboration (http://www.phys.ttu.edu/ dream)
- dual readout by alternating S and C 1 mm diameter fibres with max. light yield in blue (S) or red (C)
- tube metal could be brass or steel
- S or C optimised individual SiPM's for each fibre
- 8 SiPMs combined to one readout channel
- allows measuring the em-component in hadronic showers
 - \blacktriangleright to make e/h = 1

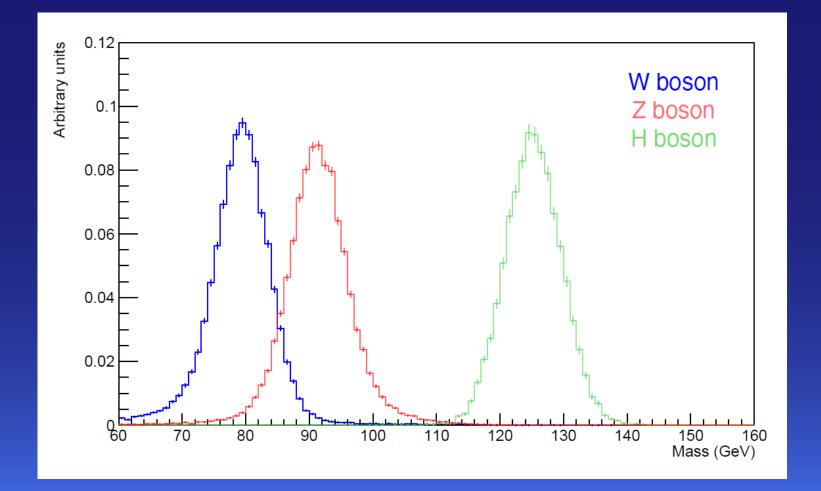
Images below show copper prototype with PM readout




doi:10.1088/1748-0221/17/09/T09007

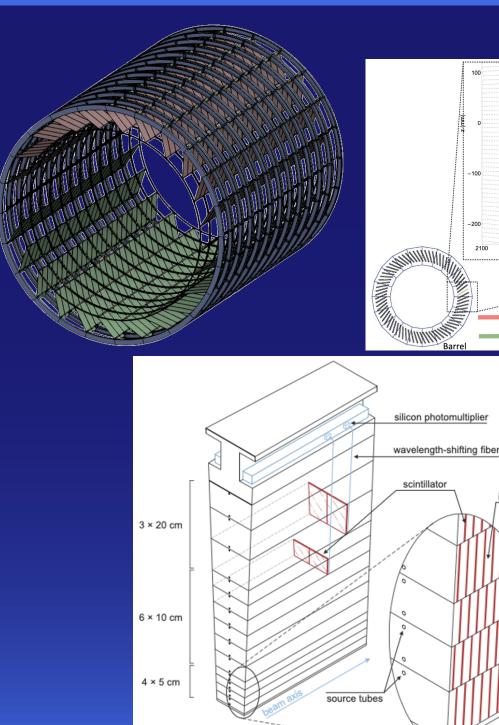
17th Terascale Detector Workshop, 19 Mar 2025, University of Bonn

arXiv:2502.21223


FCC-ee Detectors IDEA Jet Performance

ECAL performance

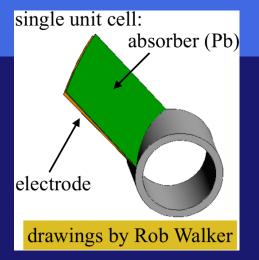
• able to reach $\sigma_{\rm eff}(E)$ / $E \simeq 3.0\%$ / $\sqrt{E} \oplus 0.2\%$ Combined ECAL+HCAL+ParticleFlow performance • linerity and resolution for S-signal only (red), dual readout (S & C) (green) and dual readout with <code>ParticleFlow</code> (blue): $\sigma_{ m eff}(E)$ / $E\simeq 29.0\%$ / $\sqrt{E}\oplus 1.5\%$


- separation of W/Z-bosons better than 2.5σ

Calorimetry: Requirements and Technology Challenges

S. Menke, MPP München

FCC-ee Detectors ► ALLEGRO

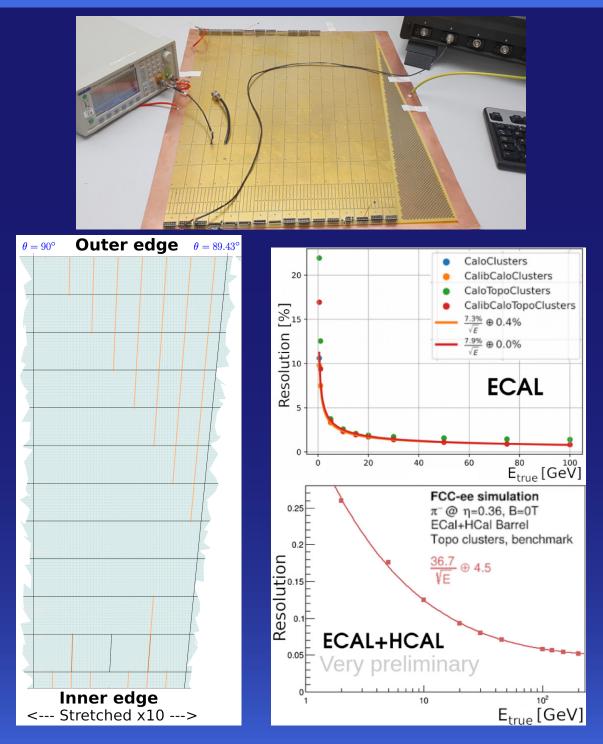


ECAL • barrel (top left):

Absorbe

electrode

- spaced in 1.2 mm distance
- \blacktriangleright tilted by 50° around cylinder axis
- LAr gaps of 2 \times 1.2 mm to 2 \times 2.4 mm
- $22 X_0$, 11 longitudinal layers
- $\Delta \phi$ = 8 mrad, $\Delta \theta$ = 10 mrad (2.5 mrad in strip cells)
- $O(1.5 \times 10^6)$ readout channels
- endcap (top right):
 - \blacktriangleright "turbine"-design with absorbers rotated by 41° around r-axis
 - growing in thickness linear with r from initial 2.9 mm
 - PCB placed between adjacent absorbers
 - ▶ in three nested wheels with 144, 272 and 512 absorbers
- HCAL (bottom left)
 - current baseline is a steel-scintillator tile calorimeter (similar to ATLAS' TileCal)



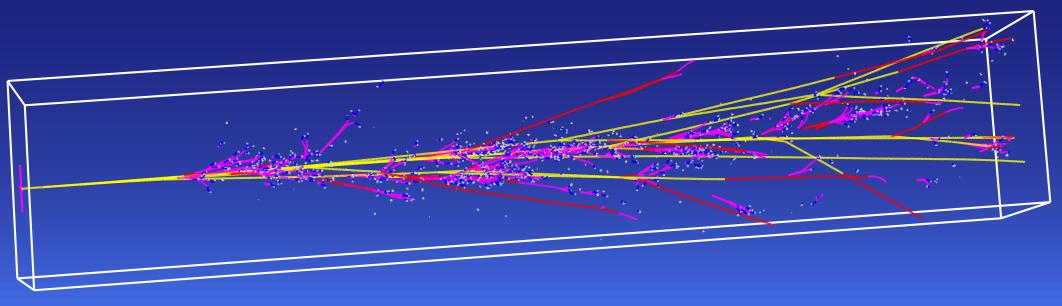
1536 1.8 mm Pb plus 2 \times 0.1 mm steel absorbers with 1.2 mm PCB

FCC-ee Detectors ► ALLEGRO ECAL

ECAL prototype

- $58 \times 48 \text{ cm}^2$ electrode prototype has been produced and tested
- division in 12 layers; front layer for presampling; second layer with finer strips (π^0 / γ -separation)
- and 16 θ towers of 0.56° each
- 7 layer PCB to route all signals out at rout
- need to balance cross-talk and noise with granularity
- challenge is the number of signal cables to route out of cryostat
 - consider cold readout electronics inside the LAr
 - limited space inside the cryostat is a challenge
- encouraging first full simulation results on ECAL and ECAL+HCAL resolution

doi:10.1016/j.nima.2024.169921


Clustering and Calibration in times of ParticleFlow

Do we still need to cluster and calibrate calorimeter signals in times of ParticleFlow?

- in ParticleFlow we want to reconstruct the energy from the measured p_{\perp} in the tracker and the measured momentum direction θ , ϕ
- the hadronic showers of these particles have an unknown em-fraction $f_{\rm em}$ particle by particle and event by event!
- the calorimetric response to hadrons is not constant! It varies with $f_{\rm em}$ which is unknown

$$\blacktriangleright$$
 $E_{
m reco} \sim f_{
m em}$ + (1 - $f_{
m em}$) / (e / h),

with e/h the intrinsic response ratio of electrons to hadrons, typically e/h > 1

S. Menke, MPP München Calorimetry: Requirements and Technology Challenges

Clustering and Calibration in times of ParticleFlow

- This means you need to measure f_{em} for each hadronic shower in order to properly reconstruct its energy
 - dual readout calorimeters can do that by means of the two components measured per cell (scintillation) light (em+had) and Čerenkov light (em only))
 - for non-compensating calorimeters you need to measure f_{em} from the shower shape:
 - dense sub-showers indicate the em component
 - less dense shower regions the rest
 - to judge dense vs. non-dense you need to group the energy measurements together i.e. form clusters
 - it is relative to the cluster's total reconstructed energy on some (uncalibrated) scale that dense and non-dense sub-shower parts are identified
 - based on that distinction the energy-scale can be calibrated and unified shower by shower and event by event

\triangleright Clustering (for determining f_{em}) and calibration (to get a uniform energy scale) need to be done before any part of the shower is subtracted

17th Terascale Detector Workshop, 19 Mar 2025, University of Bonn 24

Conclusions

FCC-ee will host a new generation of fantastic calorimeters

• with unprecedented granularity ($O(10^6) - O(10^8)$ readout channels)

depending on the technology chosen there are many challenges calorimeters need to be linear

- individual measurements proportional to deposited energy
- regular calibration and monitoring of individual channels with $Z \rightarrow \mu^+ \mu^-$ and $Z \rightarrow e^+ e^-$
- shower clustering of individual energy measurements to compensate e / h > 1 (or dual readout)
- minimal amount of material in front of the calorimeters
- maximal containment of all (em and had) showers

readout electronics need to cope with the desired granularity

- cooling and cables provide extra (unwanted) material
- readout electronics take up extra (limited) space

aim for excellent resolution

- ensure shower separation by transverse and longitudinal granularity
- regular calibration and monitoring of individual channels with $Z \to \mu^+ \mu^-$ and $Z \to e^+ e^-$ to ensure uniformity
- calibration prior to ripping apart showers by ParticleFlow

optimisation of the FCC-ee detector concepts in full swing

• full Geant4-based simulations and tests with prototypes