Einführung in die Elementarteilchenphysik

Masterclass Sven Menke MPP München

27. Februar 2013, Korbinian-Aigner Gymnasium Erding

- Teilchenphysik
- Beschleuniger
- Detektoren

- ATLAS und der LHC
- Eine Analyse mit ATLAS Daten
- W-Boson Produktion

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Simulation eines LHC Ereignisses ATLAS/CERN

Was ist Gegenstand der Elementarteilchenphysik?

antike Naturphilosophie Demokrits (ca. 460-400 v.Chr.):

"Nur scheinbar hat ein Ding eine Farbe, nur scheinbar ist es süß oder bitter; in Wirklichkeit gibt es nur Atome im leeren Raum."

Atomphysik (19. Jarhundert):

Spektroskopie erlaubte die Zuordnung chemischer Eigenschaften zu physikalischen Ordnungsmerkmalen

- Elemente werden unterschieden
- Kernphysik (Anfang 20. Jarhundert): Streuexperimente (Rutherford) belegen, dass Atome im wesentlichen leer sind (Atomhülle mit wenigen Elektronen) und einen dichten Kern (Nukleus) besitzen:

"Es ist, als ob man eine 15-Zoll-Granate auf Seidenpapier schießt, sie zurückgeschleudert wird und einen selbst trifft!"

Entdeckung der Kernspaltung (30er Jahre des 20. Jarhundert):

 Atomkerne sind auch nicht elementar, sondern bestehen aus Bausteinen – den Nukleonen
 bekannte Elementarteilchen sind nun Proton, Neutron und Elektron, aus denen die gesamte uns bekannte "normale" Materie aufgebaut ist und das Photon als Träger der elektromagnetischen Wechselwirkung

F16.1. A 63 million volt positron $(H_D=2.1\times10^\circ$ gauss-cm) passing through a 6 mm lead plate and emerging as a 23 million volt positron $(H_D=7.5\times10^\circ$ gauss-cm). The length of this latter path is at least ten times greater than the possible length of a proton path of this curvature.

- Andersen entdeckt das Positron (Carl D. Andersen, *The Positive Electron*, Phys. Rev. 43, 491-494 (1933))
- Dirac hatte Antielektronen bereits vorhergesagt (Paul A.M. Dirac, *The Quantum Theory of the Electron*, Proc. R. Soc. Lond. A117, 610-624 (1928)

plötzlich ist das Tor zu viel mehr

Elementarteilchen (Antiteilchen) offen

Fermionen, Mesonen, Bosonen

- Heute umfasst das Standardmodell der Teilchenphysik 30 "elementare" Teilchen (18 wenn man Anti-Teilchen nicht mitrechnet)
- 3 elektronartige Teilchen:
 - Elektron (e⁻), Myon (μ^{-}), Tau (τ^{-})
- 3 Antil-Teilchen zu diesen:
 - ▶ Positron (e⁺), Anti-Myon (μ^+), Anti-Tau (τ^+)
- Zu jedem elektronartigen Teilchen und Anti-Teilchen ein Neutrino:
 3 Neutrinos ν_e, ν_μ, ν_τ; 3 Anti-Neutrinos ν
 _e, ν
 _μ, ν
 _τ
- Mesonen und Baryonen sind aus 2 bzw. 3 Quarks aufgebaut, die in 6 verschiedenen Sorten vorkommen:
 Down (d), Up (u), Strange (s), Charm (c), Bottom (b), Top (t)
- ► Zu diesen 6 Quarks gibt es auch je ein Anti-Quark:
 ► Anti-Down (d
), Anti-Up (u
), Anti-Strange (s
), Anti-Charm (c
), Anti-Bottom (b
), Anti-Top (t
)
- Die Kräfte zwischen diesen Fermionen (halbzahliger Spin) werden durch 6 Bosonen (ganzzahliger Spin) ausgetauscht:
 - Photon (γ), Gluon (g), schwache Eichbosonen (Z⁰, W⁺, W⁻), und vielleicht? dem Higgs (H⁰)

S. Menke, MPP München
 Einführung in die Elementarteilchenphysik

Das "Periodensystem" der Teilchenphysik

modifiziertes Bild basierend auf Standard_Model_of_Elementary_Particles.svg von MissMJ (wikipedia.org)

S. Menke, MPP München

Einführung in die Elementarteilchenphysik

Anzahl der Parameter des Standardmodells

- Im Standardmodell sind 18 Parameter nötig, die nicht von der Theorie vorhergesagt werden
 - 9 Quark und Lepton Massen
 - 4 Parameter der Mischungsmatrix der Quarks (3 Winkel und 1 CP-verletzende Phase)
 - 3 Kopplungskonstanten ($\alpha_{QED}, G_F, \alpha_s$)
 - 2 Parameter des Higgs-Potentials (μ^2 , λ)
- **b** Dazu kommen \geq 7 Parameter aus dem Neutrinosektor
 - \geq 3 Massen
 - $\bullet \geq$ 4 Parameter der Neutrinomischungsmatrix
- Und interne Konstanten des Standardmodells, die zwar nicht als Parameter gelten, aber doch das Modell ausmachen:
 - Drittelzahlige Ladung der Quarks
 - Gleiche Anzahl von Lepton- und Quarkgenerationen
 - Anzahl der Generationen

Mögliche Vereinigung der 3 (oder aller 4) Wechselwirkungen?

Geschichte des Universums

Rückwärts in der Zeit; Aufwärts in der Energie

- 13.7×10^9 Jahre: Menschen beobachten das sich ausdehnende Universum
- 1×10^6 Jahre: Galaxien entstehen
- 360 × 10³ Jahre: Atome enstehen – Photonen entkoppeln von Materie
 Mikrowellenhintergrund
- 10⁻³⁴ Sekunden: *CP*-Verletzung sorgt für Materie Überschuß – Antimaterie vollständig zerstrahlt
- Bereich "Neuer Physik"? z.B. Produktion von Leptoquarkpaaren X, X, Y, Y?
- < 10⁻⁴³ Sekunden: ?????

S. Menke, MPP München

Warum Beschleuniger?

- Um immer näher an den Urknall heranzurücken, bauen wir Beschleuniger, die immer höhere Energien erreichen können
 - Das Prinzip ist ähnlich wie bei einem Mikroskop
 - Sichtbares Licht (f = 375 750 THz) entspricht einer Energie von E = hf = 1.55 - 3.1 eV und kann Strukturen bis ewta der halben Wellenlänge ($\lambda = c/f = 400 - 800 \text{ nm}$) auflösen
- Elektronenmikroskop (Materiewelle $E_{kin} = 1 100 \text{ keV}$)
- Theoretische Auflösung bis $\lambda = h/p = 0.04 - 0.004 \text{ nm}$ $(p = \sqrt{(E_{kin} + mc^2)^2 - m^2c^4}/c)$

- LHC: Protonen werden auf p = 7 TeV/c beschleunigt
- Theoretische Auflösung bis $\lambda = h/p = 1.8 \times 10^{-10} \text{ nm}$

Kosmische Beschleuniger

- Es gibt noch stärkere Beschleuniger als den LHC ...
 - Allerdings nicht auf der Erde
 - Die stärksten bekannten Beschleuniger sind aktive galaktische Kerne und Pulsare
 - Geladene Teilchen werden auf über 100 TeV beschleunigt
 - Auf der Erde sieht man die Bremsstrahlung der Teilchen

S. Menke, MPP München

Einführung in die Elementarteilchenphysik

Wie funktioniert ein (irdischer) Beschleuniger

- Ein einfach geladenes Teilchen, das die Spannung 1 V durchläuft erhält 1 eV kinetische Energie:
 E = 1 V × q = 1.602 × 10⁻¹⁹ J
- Beim LHC erhält jedes Proton
 7 TeV = 7 × 10¹² eV ≃ 1 × 10⁻⁶ J kinetische Energie
- Dafür bräuchte man pro Strahl 4666 Milliarden 1.5 V Batterien in Serie ...

Wie funktioniert ein (irdischer) Beschleuniger

- Viele hatten früher (manche heute noch) einen Linearbeschleuniger im Wohnzimmer
- Der Röhrenfernseher enthält eine Hochspannungskathode (5 – 30 kV) mit der Elektronen auf 5 – 30 keV beschleunigt werden

Ein Magnetfeld lenkt geladene Teilchen senkrecht zu Flugrichtung und Feldrichtung und proporitional zur Ladung sowie umgekhrt proportinal zum Impuls ab

Wie funktioniert ein (irdischer) Beschleuniger

- Kombiniert man Beschleunigerstrecken (Hochspannung) mit Magneten, kann man die Hochspannung mehrfach durchlaufen
- Im Prinzip beliebig oft
 für beliebig hohe Energien
- Praktisch ist die Energie begrenzt, da bei der magnetischen Ablenkung Bremsstrahlung entsteht
 - Energieverlust

Detektorprinzipien

Alle Teilchendetektoren basieren auf der Messung der Wechselwirkung des Teilchens mit Materie

 Die Wechselwirkung beeinflußt natürlich auch das Teilchen selbst
 wichtiges Kriterium f
 ür den Aufbau eines Detektors

Ganz grob kann man die meisten Detektoren in drei Klassen aufteilen

- 1. Ortsdetektoren
- 2. Energieverlustdetektoren
- 3. Flugzeitdetektoren

Manchmal beherrscht ein Detektor mehr als eine dieser Messungen – aber selten alle gleich gut

- Eng mit den drei obigen Detektorprinzipien ist die Teilchenidentifikation verknüpft, die z.B. durch Kombination von Orts- und Energiemessung sowie das Hinzufügen von Magnetfeldern erreicht werden kann
- Ortsmessung im Magnetfeld ist z.B. zugleich eine Impulsmessung
- Impuls- und Energiemessung zusammen erlauben die Bestimmung der Masse

Spurdefinierende Detektoren

Detektoren, die pro Teilchen mehrfach den Ort beim Durchgang des Teilchens durch das sensitive Volumen bestimmen, nennt man

> EVENT 294/0995 $\nu p \rightarrow D^* p \mu^-$

μ. 42.5

K 0.32

spurdefinierende Detektoren

Beispiele

- Nebelkammer
- Blasenkammer
- Funkenkammer
- Drahtkammer
- Halbleiterdetektoren

- In der Nebelkammer bilden Luftionen Kondensationskeime
 Wassertröpfchen entlang der Spur
- Die überhitzte Flüssigkeit in einer Blasenkammer beginnt an den Ionen zuerst zu kochen
 Gasblasen entlang der Spur
- Spannungspulse durch primäre Elektron-Ionen-Paare, die durch ein elektrisches Feld beschleunigt wieder Elektron-Ionen-Paare erzeugen
 Signale zwichen Elektrodenpaaren entlang der Spur

Silizium Detektoren

Prinzip eines Silizium-Detektors

- im Grunde eine dünne (ca. 300 μm) Diode,
 die in Sperrichtung betrieben wird
- geladene Teilchen erzeugen durch Ionisation
 Elektronen-Loch Paare im Silizium
- Löcher und Elektronen wandern in entgegengesetzte Richtungen
- fein segmentierte (typisch sind 100 μm)
 Streifen oder Pixel ermöglichen sehr genaue
 ein- oder zweidimensionale Auslese

Beispiel: Ein Modul des D0 Detektors (Fermilab)

S. Menke, MPP München

Einführung in die Elementarteilchenphysik

Kalorimeter

- Detektoren, die die Energie des in das sensitive Volumen einfallenden Teilchens messen, nennt man Kalorimeter
 Beispiele
 - homogene Kalorimeter
 - Samplingkalorimeter
- Anwendungen
 - elektromagnetische Kalorimeter (γ , e^{\pm}) (z.B. OPAL EM Barrel (oben))
 - hadronische Kalorimeter (π^{\pm} , n, p, ...) (z.B. ATLAS Had Endcap (unten))

 Signalbildung meist durch Ionisation oder die Ionisation begleitende Effekte (Szintillation, Čerenkov-Licht, etc.) der Teilchen im elektromagnetischen oder hadronischen Schauer

Kalorimeter Elektromagnetische Schauer

Vereinfachtes elektromagnetisches Schauermodell (nach Rossi)

- Elektron mit Energie *E*₀ trifft auf das Kalorimeter
- Jedes Elektron/Positron strahlt nach genau einer Strahlungslänge ein Bremsstrahlungsphoton mit der halben Energie ab
- Jedes Photon konvertiert nach einer Strahlungslänge in ein e⁺e⁻–Paar mit je der Hälfte der Photonenergie
- Nach *t* Strahlungslängen besteht der Schauer aus 2^{*t*} Teilchen (e⁺, e⁻, γ zu etwa gleichen Teilen) mit einer Energie von je $E_0/2^t$
- Sobald $E_0/2^t$ unterhalb eine kritische Schwelle sinkt, bricht der Schauer ab
 - $\blacktriangleright t_{\max} \sim \ln(E_0)$
 - ► die Schauertiefe skaliert logarithmisch mit der ursprünglichen Energie E_0 ; die Gesamtzahl der geladenen Teilchen mit E_0 .
- Schematische Entwicklung eines Schauers (oben) und etwas realistischer f
 ür ein 50 GeV Elektron in Bleiglas (unten)

S. Menke, MPP München

Einführung in die Elementarteilchenphysik

Kalorimeter Hadronische Schauer

- Hadronische Wechselwirkungen werden durch die nukleare Wechselwirkungslänge λ beschrieben
- Typische Kalorimeter benutzen Materialien mit $\lambda \simeq 10 X_0$
 - dabei enstehen im wesentlichen π^+ , π^- und π^0
 - Die π⁰ zerfallen sofort in γγ ► hadronische Schauer haben eine elektromagnetische Komponente mit etwa 1/3 der gesamten Energie für 10 GeV Pionen
 - intrinsisches
 Antwortverhalten der
 Kalorimeterauslese ist
 typischerweise schlechter
 für Hadronen als füe
 Elektronen (z.B. durch
 Neutronen)
 Das
 e/h-Verhältnis mißt
 diesen Unterschied

Myon Kammern

- Elektronen und Photonen werden im vorderen Teil des Kalorimeters (elektromagnetisches Kalorimeter) nachgewiesen
 - Elektronen hinterlassen außerdem eine Spur im inneren Detektor
- Pionen, Neutronen und Protonen verursachen hadronische Schauer und werden im gesamten Kalorimeter nachgewiesen
 - Pionen und Protonen hinterlassen außerdem eine Spur im inneren Detektor
- Myonen verursachen keinen Schauer und hinterlassen nur Ionisationsenergie im Kalorimeter
 - und eine Spur im inneren Detektor
 - sowie als einzige Teilchen Spuren im äußeren Detektor (den Myon-Kammern)
- Neutrinos wechselwirken gar nicht und verlassen daher unbemerkt den Detektor
 - können aber indirekt über den fehlenen Transversalimpuls nachgewiesen werden

Der Large Hadron Collider LHC

LHC: Proton-Proton Kollisionen bei Schwerpunktsenergien $\sqrt{s} = 7\&8 \text{ TeV}$ seit März 2010

- Erster Betrieb September 2008
- Unfall kurz nach Inbetriebnahme
 Reparatur bis Ende 2009
- Ende 2009 -Anfang 2013 stabiler Betrieb
- Momentan: Pause bis 2015, um auf 14 TeV umzustellen

S. Menke, MPP München

Der Large Hadron Collider LHC

1232 supraleitende Dipole (jeder 15 m lang)

- 27 km langer Tunnel
- Protonen kreisen ca. 11000 Mal pro Sekunde
- Alle 25 ns kollidieren 2 der 2 × 2800 Protonenpäckchen mit je 10¹¹ Protonen
- Alle Protonen zusammen haben die kinetische Energie eines ICE3 bei 200 km/h

Einzelne Stöße haben nur die Energie zweier Mücken, die im Flug zusammenstoßen

S. Menke, MPP München

Einführung in die Elementarteilchenphysik

27. Februar 2013 21

Der ATLAS Detektor

S. Menke, MPP München

Einführung in die Elementarteilchenphysik

27. Februar 2013 22

Der ATLAS Detektor > Spurdetektor

- Silizium Detektoren (Pixel und Streifendetektoren)
- In einem 2 T starken Magnetfeld (Feldrichtung parallel zur Strahlrichtung)
- ▶ 80.4 × 10⁶ Pixel (50 × 400 µm²)
- 6.3×10^6 Silizium Streifen (80 μ m \times 2 \times 6.4 cm)

351 × 10³ "Strohkammern" messen Übergangsstrahlung zur Teilchenidentifikation

Auflösung des Spurdetektors: $\sigma_{p_T}/p_T = 0.038\% p_T(GeV) \oplus 1.5\%$

S. Menke, MPP München

Einführung in die Elementarteilchenphysik

Der ATLAS Detektor Kalorimeter

- Elektromagnetisches Kalorimeter: LAr/Pb Akkordion
- Blei ist der Absorber (produziert die Sekundärteilchen)
- Flüssiges Argon wird ionisiert und weist das Signal nach
- Hadronisches Zentralkalorimeter: Eisen/Plastik-Szinitillator
- Hadronisches Endkappenkalorimeter: LAr/Cu
- Forwärtskalorimeter: LAr/Cu(W)

- > 190 \times 10³ Auslesekanäle
- Auflösung für e/γ : $\sigma_E/E \simeq 10\%/\sqrt{E}$
- Für jets: $\sigma_E/E \simeq 50\%/\sqrt{E} \oplus 3\%$

S. Menke, MPP München

Der ATLAS Detektor Myon-Kammern

Myon-Kammern befinden sich in einem torodialem Magnetfeld (ringförmig um Detektorachse) mit einer Biegestärke von 2 – 8 Tm

S. Menke, MPP München

Einführung in die Elementarteilchenphysik

ATLAS Analyse

- Beim LHC kollidieren Protonen mit exakt entgegengesetztem Impuls
- Je höher die Energie der Protonen, um so mehr Substruktur bekommt man zu sehen
- Bei ganz niedrigen Energien sieht das Proton wie ein Teilchen aus
- Bei mittleren Energien sieht man die 3 Valenzquarks des Protons
- Bei hohen Energien sieht man immer mehr Quark-Antiquark-Paare und Gluonen

D.h. beim LHC kollidieren nicht Protonen, sondern einzelne Quarks und Gluonen!

W-Boson Produktion

In niedrigster Ordnung kollidieren ein Quark (q) und ein Anti-Quark (q') aus den Protonen, wobei ein Quark die Ladung ±2/3e und das andere die Ladung ∓1/3e trägt, und bevorzugt beide Quarks aus derselben Familie stammen

- Die beiden Quarks zerstrahlen zu einem W-Boson
- Das W-Boson zerfällt sofort in ein Lepton (I) (Elektron, Myon, Tau) und Neutrino (v) oder in ein Quark (q") und ein Anti-Quark (q") – wieder bevorzugt aus einer (aber u.U. einer anderen als vorher) Familie
- Quarks (und τ -Leptonen) sind als Teilchenbündel (Jets) sichtbar
- Elektronen als isolierte Spur und Kalorimeter-Energie
- Myonen als isolierte Spur, kaum Kalorimeter-Energie und Myon-Kammer Treffern
- Neutrinos erkennt man am fehlenden Transversalimpuls (MET: Missing Energy in Transverse Projection)

S. Menke, MPP München

Einführung in die Elementarteilchenphysik

- Das W-Boson ist sehr schwer (80.4 GeV) und daher wird es im wesentlichen in Strahlrichtung erzeugt
- Die Protonenreste fliegen entlang der Strahlröhre weiter und werden nicht detektiert

- Die Signatur im leptonischen Kanal ist also:
 - eine isolierte Spur mit
 - (Elektron) oder ohne (Myon) Energie
 - große fehlende transversale Energie, die in \u03c6 etwa einen 180° Winkel zur Leptonspur aufweist
 - sonst wenig Aktivität im Detektor

- Genau ein Elektron: $p_{\perp} > 20 \text{ GeV}$, $|\eta| < 1.37 \text{ or } 1.52 < |\eta| < 2.47$
- ▶ Oder genau ein Myon: $p_{\perp} > 20$ GeV, $|\eta| < 2.4$
- Transverse Masse des Leptonsystems m⊥ > 40 GeV (m⊥ = √2p'⊥ 𝔼⊥(1 − cos∆φ))
 ungefähr ∆φ > 125°, falls kein Taschenrechner zur Hand

Mit diesen Selektionskriterien könnt ihr ATLAS Daten untersuchen und das Verhältnis von positiven zu negativen W-Bosonen bestimmen. Welchen Wert erwartet ihr?