

from τ decays and e⁺e⁻ annihilation

PEP-N Workshop

30. April 2001, SLAC

Sven Menke, SLAC

- R_{τ} and the strong coupling
 - spectral functions
 - perturbative and non-perturbative QCD
 - the role of moments
 - QCD fit results
 - hypothetical au decays
- R_{e+e} and the strong coupling
 - combination of different experiments
 - $R_{e^+e^-}$ including new data up to $4.5 \, GeV^2$
 - why not use moments too?
 - preliminary QCD fit results
- Conclusion

The Hadronic Decay Ratio of the τ

$$\mathsf{R}_{\tau} = \frac{\Gamma\left(\tau \to \nu_{\tau} \text{ hadrons}\right)}{\Gamma\left(\tau \to \nu_{\tau} \text{ e } \nu_{\theta}\right)}$$

• Tree: $R_{\tau} = N_{C} (|V_{ud}|^{2} + |V_{us}|^{2})$ = 3

Spectral Functions

OPAL Collaboration, K. Ackerstaff et al., Eur. Phys. J. C7 (1999) 571.

Theoretical Description of R_{τ} I

$$\mathsf{R}_{\tau,\mathsf{V/A}} = \frac{3}{2} |\mathsf{V}_{\mathsf{ud}}|^2 \mathsf{S}_{\mathsf{EW}} \left(1 + \delta_{\mathsf{pert}} + \delta_{\mathsf{mass}}^{\mathsf{V/A}} + \delta_{\mathsf{non-pert}}^{\mathsf{V/A}} \right)$$

• perturbative part

$$1 + \delta_{\text{pert}} = \frac{1}{2\pi i} \oint_{|s|=m_{\tau}^2} \frac{ds}{s} \left(1 - 2\frac{s}{m_{\tau}^2} + 2\frac{s^3}{m_{\tau}^6} - \frac{s^4}{m_{\tau}^8} \right) \underbrace{(-s)\frac{d\Pi}{ds}}_{D(s)}$$

CIPT: D(s)
$$\sim 1 + \frac{\alpha_{s}(-s)}{\pi} + 1.64 \frac{\alpha_{s}^{2}(-s)}{\pi^{2}} + 6.37 \frac{\alpha_{s}^{3}(-s)}{\pi^{3}}$$

FOPT: $1 + \delta_{pert} = 1 + \frac{\alpha_{s}(m_{\tau}^{2})}{\pi} + 5.20 \frac{\alpha_{s}^{2}(m_{\tau}^{2})}{\pi^{2}} + 26.4 \frac{\alpha_{s}^{3}(m_{\tau}^{2})}{\pi^{3}}$
RCPT: D(s) $\sim 1 + \sum_{n=1}^{\infty} \kappa_{n} \beta_{0}^{n-1} \frac{\alpha_{s}^{n}(-s)}{\pi^{n}}$

Theoretical Description of R_{τ} II

$$\mathsf{R}_{\tau,\mathsf{V/A}} = \frac{3}{2} |\mathsf{V}_{\mathsf{ud}}|^2 \mathsf{S}_{\mathsf{EW}} \left(1 + \delta_{\mathsf{pert}} + \delta_{\mathsf{mass}}^{\mathsf{V/A}} + \delta_{\mathsf{non-pert}}^{\mathsf{V/A}} \right)$$

power corrections

> need several observables with different s dependence

The Definition of Moments of R_{τ}

Cauchy Integral theorem

$$\oint \frac{ds}{s^n} = 0, \text{ for } n \neq 1$$

$$\delta_{V/A}^{D,kl} = 8\pi^{2} \sum_{dim \ O = D} \frac{C_{D}^{V/A} \langle O \rangle}{m_{\tau}^{D}} \begin{pmatrix} 1 & 0 & -3 & -2 \\ 1 & 1 & -3 & -5 \\ 0 & -1 & -1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{bmatrix} 10 \\ 11 \\ 11 \\ 11 \\ 11 \\ 12 \\ 13 \end{bmatrix}$$

Comparison of different fits to the τ data (CIPT)						
	V	A	V and A			
$\alpha_{s}(m_{ au}^{2})$	0.341 ± 0.017	0.357 ± 0.019	0.347 ± 0.012			
$\frac{\langle \alpha_{\rm s} {\rm GG} \rangle}{{\rm GeV}^4}$	0.002 ± 0.010	-0.011 ± 0.020	0.001 ± 0.008			
$\delta_{\sf V}^6$	0.0259 ± 0.0041		0.0256 ± 0.0034			
$\delta_{\sf V}^{\sf 8}$	-0.0078 ± 0.0018		-0.0080 ± 0.0013			
δ^{6}_{A}		-0.0246 ± 0.0086	-0.0197 ± 0.0033			
δ^{8}_{A}		0.0067 ± 0.0050	0.0041 ± 0.0019			
$\chi^2/d.o.f.$	0.07/1	0.06/1	0.63/4			

V+A		Stat.	Br.	Syst.	Theo.	$\chi^2/d.o.f.$
$\alpha_{s}(m_{ au}^{2})$	0.348	±0.002	± 0.009	±0.002	± 0.019	
$\frac{\langle \alpha_{\rm s} {\rm GG} \rangle}{{\rm GeV^4}}$	-0.003	± 0.007	±0.007	± 0.006	± 0.005	0 16/1
δ^{6}_{V+A}	0.0012	± 0.0034	± 0.0033	± 0.0029	± 0.0006	0.10/1
δ^8_{V+A}	-0.0010	±0.0024	± 0.0016	± 0.0015	± 0.0003	

Decay Ratio for a hypothetical τ'

$$\mathsf{R}_{\tau',\mathsf{V}+\mathsf{A}}(s_0 = \mathsf{m}_{\tau'}^2) \sim \int_{0}^{s_0} \frac{\mathsf{d}s}{s_0} \left(1 - \frac{s}{s_0}\right)^2 \left[\left(1 + \frac{2s}{s_0}\right) (\mathsf{v}(s) + \mathsf{a}(s)) + \mathsf{a}^{(0)}(s) \right]$$

Running α_s

 ${\sf R}_{{\sf e}^+{\sf e}^-}$ and $\alpha_{\sf s}$

Averaging of the e⁺e⁻ data

- individual experiments interpolated with
- trapezoidal rule
- data points:
 - $d_k = c_k d_i + (1 c_k) d_{i+3}$, k = i + 1, i + 2
- statistical errors:

$$\sigma_{k} = c_{k} \sigma_{i} + (1 - c_{k}) \sigma_{i+3}$$

• larger than the Gauss errors:

$$\sigma'_{k} = c_{k} \sigma_{i} \oplus (1 - c_{k}) \sigma_{i+3}$$

Ratio: $r_{k} = \sigma_{k} / \sigma'_{k}$

- Correlation matrix: $V_{kl}^{\text{stat}} = r_k r_l \left(c_k c_l \sigma_i^2 + (1 - c_k)(1 - c_l) \sigma_{i+3}^2 \right)$
- systematic errors are also interpolated with trapezoidal rule
- correlation is 100 %
- Total Error matrix: $V = V^{\text{stat}} + V^{\text{sys}}$
- Weighted average over all individual results gives final data points
- Errors scaled with S = $\sqrt{\chi^2/\chi^2_{68\,\%}}$ if S > 1

Exclusive modes I: 2π , $2\pi 2\pi^0$

$$(\mathbf{f}) \begin{pmatrix} \mathbf{f} \\ \mathbf{f}$$

$$\sigma(\mathrm{e^+e^-}
ightarrow \pi^+\pi^-\pi^0\pi^0)(\mathrm{s})$$

$$\sigma(\mathrm{e^+e^-}
ightarrow \pi^+\pi^-)(\mathrm{s})$$

Exclusive modes II: 4π , $4\pi 2\pi^0$

$$\sigma(\mathrm{e^+e^-} \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^0\pi^0)(\mathrm{s})$$

$$\sigma(e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-)(s)$$

Exclusive modes III: $\omega \pi^0$, 6π

$$\sigma(\mathrm{e}^+\mathrm{e}^- \to \pi^+\pi^-\pi^+\pi^-\pi^+\pi^-)(\mathbf{s})$$

$$\sigma(e^+e^- \rightarrow \omega \pi^0)(s)$$

Exclusive modes IV: $2\pi\pi^0$, 2K

$$\sigma(e^+e^- \rightarrow K^+K^-)(s)$$

$$\sigma(e^+e^- \rightarrow \pi^+\pi^-\pi^0)(s)$$

Exclusive modes V: $\eta 2\pi$

$$\sigma(e^+e^- \rightarrow \eta \pi^+\pi^-)(s)$$

Other exclusive modes without picture

- $4\pi\pi^{0}$
- $3\pi 2\pi^0$
- $2\pi 3\pi^0$
- K⁰_SK⁰_L
 2Kπ⁰
- 2K2π
- K⁰_SX

$R_{e^+e^-}$ from exclusive modes

preliminary

Correlations in %

$$R_{e^+e^-}(s)$$

The Definition of Moments of $R_{e^+e^-}$

inspired by M. Davier and A. Höcker, Phys. Lett. B419 (1998) 419.

 $R^{kl=20,30,31,32,33}$ up to $4.5 \,\mathrm{GeV^2}$ l preliminary

- colored curves denote data and experimental errors
- black curves show extrapolated fit results from a fit at $s_0 = 4 \text{ GeV}^2$ with theoretical and experimental errors
- theoretical errors (strange quark mass) dominant

$\alpha_{s}(m_{Z})$	=	$0.118\ \pm 0.003\ \pm 0.005$
$\langle lpha_{\sf s}{\sf G}{\sf G} angle$	=	$(0.028 \pm 0.006 \pm 0.027) GeV^4$
$\langle O \rangle^{D=6}$	=	$-(0.0042\pm0.0008\pm0.0001)\text{GeV}^6$
$\langle 0 \rangle^{D=8}$	=	$(0.0044 \pm 0.0005 \pm 0.0006) GeV^8$

$R_{e^+e^-}^{kl=20,30,31,32,33}$ up to 4.5 GeV² II preliminary

- black curves show extrapolated fit results from a fit at $s_0 = 4 \text{ GeV}^2$ with $\langle \alpha_s \text{ GG} \rangle$ as free parameter
- red curves show extrapolated fit results from a fit at $s_0 = 4 \text{ GeV}^2$ with m_s as free parameter

$\alpha_{s}(m_{Z})$	=	$0.117\ \pm 0.004\ \pm 0.002$
m _s	=	$(0.220\pm 0.036\pm 0.056)\text{GeV}$
$\langle 0 \rangle^{D=6}$	=	$-(0.0041\pm0.0007\pm0.0001)\text{GeV}^6$
$\langle 0 \rangle^{D=8}$	=	$(0.0043 \pm 0.0005 \pm 0.0002) \text{GeV}^8$

Conclusions

- OPE and QCD fits work reliable at low s
- $s_0^{min} \approx 1.5 \, {
 m GeV^2}$ for non-strange au decays
- $s_0^{min} \approx 1.5 3 \,\text{GeV}^2$ for e^+e^- annihilation (choice of kl)
- experimental error from low s e⁺e⁻ data on $\alpha_s(m_Z) \approx 3\%$
- expected improvement of experimental errors at PEP-N:
 - $\Delta \alpha_{s} \longrightarrow 0.93 \Delta \alpha_{s}$

 $\Delta \langle \alpha_{s} \, \mathrm{GG} \rangle \rightarrow 0.72 \Delta \langle \alpha_{s} \, \mathrm{GG} \rangle$

 $\Delta \langle O \rangle^{D=6} \rightarrow 0.70 \Delta \langle O \rangle^{D=6}$

 $\Delta \langle O \rangle^{D=8} \rightarrow \textbf{0.56} \Delta \langle O \rangle^{D=8}$

 sensitivity to non-perturbative QCD parameters could be used to extract m_s

Fit with m_s instead of $\langle \alpha_s \, GG \rangle$ as free parameter and $\langle \alpha_s \, GG \rangle = (0.02 \pm 0.01) \, \text{GeV}^4$ gives m_s = $(220 \pm 36(26) \pm 59) \, \text{MeV}$

