ATLAS Experiment Project Review

Project Review 2003

Sven Menke, MPI München on behalf of the ATLAS Group @MPI

11. Dec. 2003, MPI München

LHC and ATLAS

MPI ATLAS Projects

- Semiconductor Tracker – SCT
- Hadronic End-Cap Calorimeter – HEC
- Monitored Drift Tubes – MDT
- Physics with ATLAS
- Conclusions

LHC and ATLAS

- The Large Hadron Collider LHC @ CERN
 - 14 TeV pp collisions by 2007
 - 27 km collider in the LEP tunnel @ CERN

ATLAS groups @ MPI

Calorimeters

Muon System

HEC

MDT

SCT

S. Menke, MPI München

ATLAS Experiment Project Review >

Semiconductor Tracker – SCT

- SCT layout
 - 4 layers, 18 disks
 - 4088 modules, 61 m² silicon
 - $\sigma_{R\phi} = 16 \, \mu m$, $\sigma_{R,z} = 580 \, \mu m$
- Module Production @ MPI
 - 400 of 640 middle modules for the disks
 - Site-qualification for serial production
- <image>

Pixel Detectors

- N₂ tests
 - SCT tests in nitrogen
 - Observations with the CIS detectors
 - Breakdown problem in special test environment
 - How to run @ 500 V

Schedule

SCT > Module Production

SCT forward modules

- 4 silicon strip-detectors are glued on a spine
- with 5 μm precision (perpendicular to the strips)

Mechanical QA numbers for the 16 pre-production modules

- accuracy in and perpendicular to strip direction
- front/back detector distances
- similar plots for angular distortions and stereo angle

ATLAS Experiment Project Review

SCT > **Pre-Qualification**

http://wwwatlas.mppmu.mpg.de/~sct/welcomeaux/prequal.html

- The measured module characteristics are available online
 - components used
 - IV scans
 - Hybrid/Module electrical tests
 - XY surveys
 - General comments
 - N₂ tests

2 modules produced for pre-qualification
 next 5 modules will establish serial production
 New optical measuring machine from Mitutoyo

 to comply with the QA rules of SCT

- Special SCT test problem
 - modules are mounted on a disk and ramped to 500 V in N₂ atmosphere
 - CIS detectors are specified to 350 V
 - Breakdown at 200 – 300 V observed in nitrogen
 - No breakdown observed in air

The effect is attributed to charges on the surface passivation layer

- charge decay time increases with decreasing humidity
- the charges rebuild after power disconnect

Fully irradiated detectors are demonstrated to operate at 500 V

SCT > Nitrogen Tests II

- Module "training" in N₂
 - a module is put into a cooled climate chamber
 - flushed with 160 l/h nitrogen
 - HV ramped up in 10 V steps every 10 s until breakdown

- module is left in nitrogen at 200 V for some time after breakdown
- ramp up HV again ...
- Untrained module breaks down at 280 360 V
- Training brings module to 500 V after some time
 - module ramps still to 500 V if kept in nitrogen at 30 V for 72 h
 - needs retraining after switch off
 - trains faster in the second cycle

7

"unofficial" SCT Schedule

- 18-Mar-2005 SCT Endcap A arrives @ CERN
- 04-Feb-2005 SCT Barrel assembled @ CERN
- 15-Dec-2004 SCT Endcap C arrives @ CERN

impact on Module production Schedule

- 01-Feb-2005 last Endcap modules ready
- 01-Apr-2004 first 40 middle modules (disk 8)

MPI planing

Jan-2005end of module productionFeb-2004begin of serial module productionJan-2004MPI qualifies for serial production

Hadron Endcap Calorimeter – HEC

- Layout of the ATLAS Calorimeters
- EM LAr-Pb accordion calorimeter
 - Barrel (EMB): $|\eta| < 1.4$
 - Endcap (EMEC):
 1.375 < |η| < 3.2
- Hadron calorimeters
 - Barrel (Tile): Scint.-Steel $|\eta| < 1.7$
 - Endcap (HEC): LAr-Cu $1.5 < |\eta| < 3.2$
- Forward calorimeter (FCal) $3.2 < |\eta| < 4.9$
 - FCal1: LAr-Cu
 - FCal2&3: LAr-W

HEC > Activities

- Testbeam analysis and planing
 - EMEC and HEC combined test beam in 2002
 - EMEC/HEC/FCal combined test in 2004
- Reco and Simulation Software development
- Electronics and Detector Control

- Installation @ CERN
 - HEC wheel C insertion completed 22-Oct-2003
 - HEC1A assembled 28-March-2003, ready for insertion since 06-Nov-2003
 - HEC2A assembly started 12-Nov-2003, ready before X-mas
 - July (August) 2004 HEC1A (HEC2A) insertion

Schedule

HEC beam test 2002 with EMEC

Special test beam problems

- alignment
- trigger time dependency
- non-pointing beam in η

Corrections common to ATLAS

- EMEC accordion structure
- single HV gap failures
- non-compensating calorimeters

first evaluation of combined performance

- Optimal Filtering for raw signals
- Calibration from ADC to nA
- Corrections and Clustering
- Simulation
- Calibration from nA to GeV
- Resolution for Electrons and Pions

HEC beam test 2002 with EMEC Alignment & HV

- HV failure in HEC Layer 2
 - signal shows dip in one of three φ-modules
 - measured over expected signal for 200 GeV pions vs. $(E_1 E_3)/(E_1 + E_3)$

- Geant4 MC with disconnected 1st z-gap fits data best
- correction with signal in previous and next sampling

Alignment

- E_{\max}/E_{tot} vs. x(y)
- use pad/module boundaries for alignment in x (0 cm; PS: +1.3 cm)
- use comparison with MC for alignment in y (+2.7 cm; PS: +2.5 cm)

HEC > beam test 2002 with EMEC **>** Signal Corrections

- study EMEC response to electrons first
- predict detector leakage with MC
- apply corrections

- ϕ correction due to non-uniformity in *E*-field and sampling variations of ± 1.5 %
- correction due to residual variations with the trigger time of ±1 %

13

HEC beam test 2002 with EMEC Electrons

S. Menke, MPI München

HEC beam test 2002 with EMEC Pions

No electrons in HEC only

- Electromagnetic scale from previous HEC stand-alone TB
- Modified by new electronics
- Calculated value: $\alpha_{\rm em}^{\rm HEC} = 3.266 \, {\rm MeV/nA}$

Response to 200 GeV pions in data and MC on em-scale

- upper plot shows EMEC
- lower plot shows HEC
- Geant3 and Geant4 QGSP describe data reasonably well
- Geant4 LHEP deviates substantially

HEC > beam test 2002 with EMEC **>** Pion Resolution

- $\succ \sigma_E/E$ (%) noise subtracted
 - data (π^-): $\frac{82.7 \pm 0.3}{\sqrt{E/GeV}} \oplus 0.0 \pm 0.3$
 - data (π^+): $\frac{79.9 \pm 0.4}{\sqrt{E/GeV}} \oplus 0.0 \pm 0.5$
 - noise: $\sigma_{\rm noise}/E\simeq 1-2.5\,{
 m GeV}/E$

e / π Ratio, Point J

- Geant3 and all Geant4 models give similar results
- **combined** e/π ratio
 - shows total $E_{\rm reco}/E_{\rm em}$
 - indicates the amount of non-compensation
 - fitted e/h-ratios for combined HEC and EMEC have no direct interpretation

HEC > Installation

S. Menke, MPI München

HEC > Installation II

S. Menke, MPI München

EMEC/HEC/FCal beam test 2004

May-to-Jul-2004 Aug-to-Sep-2004 Beam runs

Feb-or-Mar-2004 Technical run

Calorimeter installation

end-Mar-2005	Barrel calorimeter moved to final position
Jan-Feb-2005	Last BT coil delivered
mid-Oct-2004	Barrel calorimeter completed
egin-Aug-2004	LAr Barrel Cryostat lowering
01-May-2004	1 st BT Coil ready for installation
01-Mar-2004	Tile Barrel installation starts
egin-Jan-2004	Tile & BT infrastructure installation starts

due to shifts in Barrel schedule no new official Endcap installation schedule

S. Menke, MPI München

ATLAS Experiment Project Review

Monitored Drift Tubes – MDT

Muon Chambers layout

- 5000 m² of precision muon chambers
- Momentum resolution 2 10 % for 10 1000 GeV muons
- Optical monitoring of relative chamber positions with 30 μm accuracy

- Muon System commitments @ MPI
 - Construction of 88 MDT chambers (BOS) (15 % of active area)
 - Design and production of 104 MDT/RPC supports
 - Design and fabrication of 196 kin. mounts for endcap alignment system
 - Design of access tools for BOS chambers

MDT > Installation of gas connections

- MDT gas connections
 - 3500 O-ring seals per chamber
 - high gas tightness required
- 1.5 years delay due to corrosion of brass gas tubelets
 - replaced by stainless steel
 - 2 chambers/week required production rate starting Jan-2004

21

MDT > Other Activities

- Installation and Test of Readout Electronics
 - start Jan 2004 in Eching
- MDT/RPC common supports
 - assembly @ MPI Jan–May 2004
 - mounting of MDT and RPC on common support @ CERN
 - installation test @ CERN next week

Chamber precision measurements

- optically and mechanically during assembly with 10 μm accuracy
- X-ray scans with 3 µm precision
- Start of chamber tests @ LMU
- Performance tests at LHC background levels

MDT > Performance tests at LHC background levels

- Nominal rates up to 100 Hz/cm²
- X5/GIF testbeam and γ irradiation facility
 @ CERN 2002/2003
 - 100 GeV muon beam
 - silicon strip detector beam telescope
 - test up to $10 \times$ nominal ATLAS background
 - MDT resolution 80 μm without irradiation

S. Menke, MPI München

MDT > Optical alignment system

- Concept by MPI
 - Misalignment corrections of track sagitta with 30 μ m precision
 - for 20 μ m sensor positioning accuracy
- Test of one sector @ CERN
 - muon sagitta reconstruction in 3 chamber layers
 - sagitta follows controlled movement
 - correction with alignment data yields stable sagitta within 20 μ m

Chamber Installation

Jun-2005 Main installation (62)

Feb-2005 Feet installation 2 (22)

Oct-2004 Feet installation 1 (4)

Chamber assembly and testing

until Aug-2004

Jun-2004-Dec-2004 MDT/RPC assembly & test @ CERN

Oct-2003-Nov-2004 test @ LMU

Oct-2003-Oct-2004 installation of gas connections

Jan-2003-May-2004 installation of readout electronics

complete chamber assembly

25

- Physics program of ATLAS
 - Higgs searches
 - SUSY searches
 - t-physics
 - b-physics

Recent development in Higgs searches

- Weak Boson fusion gives excellent discovery potential for a wide Higgs mass range
- Signature: 2 jets with large Δη, 1(2) high p_⊥ lepton(s), missing transverse momentum
- jet reconstruction in EMEC/HEC/FCal important
- lepton reconstruction with ID/Muon

SN-ATLAS-2003-24

Conclusions

MPI projects for ATLAS progressing well

- SCT group qualifies soon for serial production
- HEC group finished installation of one full endcap
- MDT group solved gas-tube problem
- All three subsystems important for key physics topics with ATLAS
- Outlook: exciting combined performance tests in 2004

27