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Hadronic τ Decays � How a lepton can be sensitive to QCD

� The τ -lepton with mτ = 1.777 GeV is the only lepton heavy
enough to decay into hadrons

� The hadronic decay ratio of the τ is defined as:

Rτ =
Γ(τ → ντ hadrons)

Γ(τ → ντ e ν̄e)

� the naive expectation is just the number of colors:
Rτ = NC (|Vud|2 + |Vus|2) = 3

� experimentally one finds a 20% larger value: Rτ = 3.635
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Hadronic τ Decays � dRτ /ds

� The hadronic decay spectrum of the τ , dRτ/ds i.e. the spectrum of the
squared masses of the hadrons the τ decays into shows this sensitivity

� perturbative QCD is repsonsible for the total increase of 20 %

� non-perturbative QCD is repsonsible for the observed resonance
structure
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Perturbative QCD Methods in Hadronic τ Decays

� Use the optical theorem:
• The differential decay width dΓ/ds for the τ going into hadrons is

proportional to the imaginary part of the vacuum polarization ImΠ
(also called spectral function) of the W propagator

• this means it is enough to calculate the inclusive vacuum polarization
of the W instead of every single final state of the hadronic τ decays
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Perturbative QCD Methods in Hadronic τ Decays � Cauchy
� Use the Cauchy theorem:

• since Π is analytic (except for the real positive s-axis where it might
have poles) in the entire complex s-plane

• and due to the identity ImΠ(s+ + iε) =
1
2i

(Π(s+ + iε)− Π(s+ − iε))

• the integral along the real positive s-axis can be expressed as a
circular integral at |s| = m2

τ

• this means all QCD calculations are done at a well defined rather
high scale |s| = m2

τ over the vacuum polariztion amplitude
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Perturbative QCD Methods in Hadronic τ Decays � Adler-Function

� All the dynamics of the vacuum polarization amplitude is in its

logarithmic derivative, the so-called Adler-function: D(s) = −s
dΠ(s)

ds

� the Adler-function can be written as polynomial in the strong coupling

constant αs: D(s) =
1

4π2
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Perturbative QCD Methods in Hadronic τ Decays � Final Integral

� convert the contour integral over Π(s) via partial integraion in a contour
integral over D(s)I
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Perturbative QCD Methods in Hadronic τ Decays � β-Function

� the perturbative descriptions of hadronic τ decays start all with the same
integral given on the previous slide

� they differ in the way the integral is calculated

� most interesting part is the treatment of αs(−s) on the circle |s| = m2
τ

� QCD does not tell us how large αs(µ
2) at a given scale µ is, but QCD

does tell us what αs(µ
2
1) at some scale µ1 is if we know it at some other

scale µ0

� this prediction is made with the so-called β-function:
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Perturbative QCD Methods in Hadronic τ Decays � Scale Dependency

� The Adler-function shown used Kn for a fixed choice of renormalization
scale −µ2 = m2

τ

� Physics should not depend on this choice

� The truncation of the perturbative series introduces a residual

dependency: µ2 d

dµ2 D(s, µ2
) = 0 + O

“
α5

s (µ
2
)
”

� This can be solved for each order with the β-function (η = ln(−s/µ2
)):
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Perturbative QCD Methods in Hadronic τ Decays � FOPT

� Fixed Order Perturbation Theory

• make Taylor-expansion of αs(−s) on the circle |s| = m2
τ around

αs(m2
τ )

• insert Taylor-expansion in the integral which becomes solvable in all
orders

• order the result in powers of αs(m2
τ )

• keep only the terms up to a fixed order in αs(m2
τ )
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Perturbative QCD Methods in Hadronic τ Decays � CIPT
� Contour Improved Perturbation Theory

• evolve αs(−s) in small steps numerically using the β-function on the
circle |s| = m2

τ

• insert the numerical values in the integral and solve it numerically too
• the result contains integrals over terms of the form
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τ )

π
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lnn −s
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τ
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, with k = 0, 1, 3, 4; l = 1, . . . , 4; m > 4/l

(for FOPT up to 4th order), and n = 1, . . . , m − 1, which are
neglected in the FOPT approach

� plots (real part: left,
imaginary part:
right) show
Taylor-expanded
αs(s = m2

τ exp(iϕ))
(blue) and numerical
result (black) for
various orders 0.18
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Perturbative QCD . . . � CIPT & FOPT compared
� One could compare CIPT and FOPT by simply developing FOPT around

a different point on the circle s = m2
τ exp(iϕ) instead of the usual point

ϕ0 = 0

� Use αs(m2
τ exp(−iϕ0)) =

αs(m2
τ exp(iϕ0))

∗ to split the
FOPT integral into 2 half-circle
integrals with
Taylor-expansions around ϕ0
and −ϕ0, respectively

� Plot shows δpert, the
perturbative part of Rτ for
generalized FOPT and CIPT as
a function of ϕ0

� Intrinsic uncertainty for FOPT
3.5× larger than uncertainty
from K4 on CIPT

� Average from FOPT agrees
with CIPT
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Perturbative QCD Methods in Hadronic τ Decays � RCPT

� Renormalon Cchain Perturbation Theory
• in the limit that all βk,k>0 vanish
• and only the terms with the highest

power of β0 are kept
• one can re-write the Kn of the

Adler-function as power series in β0

• keeping only the largest power in β0
one can re-sum the Adler-function to
all orders in αs up to some
Renormalon ambguities

∆D(n) ∝ Λ2n

sn , n = 2, 3, . . .

• this method corresponds to an
insertion of fermion loops in the
gluon-propagator

� RCPT is usually combined with FOPT up
to the 3rd order in order to include some
known βk,k>0 and non-leading β0 terms

q
q
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Non-Perturbative QCD Methods in Hadronic τ Decays � OPE

� Operator Product Expansion
• the Adler-function describes the perturbative part of the

vacuum-polarization only
• systematic way to separate perturbativ short-distance effects from

non-perturbative long-distance effects is given by the OPE:

Π(s) =
X

D=0,2,4,...

1
(−s)D/2

X
dim(O)=D

C(s, µ)〈O(µ)〉

• C(s, µ) are perturbative factors (Wilson-coefficients)
• 〈O(s, µ)〉 are kondensates (vacuum-expectation

values) of local operators and contain the
non-perturbative parts

• D = 0 corresponds to the perturbative part for
massless quarks

• D = 2 corresponds to quark-mass corrections (small
for non-strange τ -decays)

• D = 4, 6, 8, . . . are the dimensions for the so-called
power corrections with non-trivial vacuum-expecation
values of the operators 〈O〉

〈ψ
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Non-Perturbative QCD Methods in Hadronic τ Decays � Moments

� use different weighting polynomials pkl
(s) =

„
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project out different parts of the power corrections (Cauchy)
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� contributions for D > 8 do not contribute to Rτ

� the D = 2 quark-mass corrections are purely perturbative again and can
be calculated

Rkl
τ =

m2
τZ

0

ds
„

1− s
m2

τ

«k „
s

m2
τ

«l
dRτ

ds
= 3

0@1 + δkl
pert +

X
D=2,4,6,8,...

δD,kl

1A
S. Menke, MPI München � QCD in τ Decays � Ringberg Workshop 15

http://www.mppmu.mpg.de/~menke


Measurements

� From the discussion of the theory the following requirements for the
measurements emerge
• We need the total decay rate Rτ for the perturbative part
• We need the spectrum dRτ/ds to define the moments for the

non-perturbative parts
• since the mass of the strange quark is not small it is best to restrict

the measurments to the non-strange decays of the τ

• To enhance the tests of non-perturbative QCD one can even
separate axial-vector (A) and vector (V) decays

• All perturbative predictions (D = 0) remain the same but get in
addition a factor |Vud|2 for non-strange decays and a factor 1/2 for
the separation into V/A

• The non-perturbative power corrections (D > 0) receive the same
factors as above but also the δD

V/A will differ
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Measurements � Leptonic Branching Ratios and Lifetime

� The total hadronic decay ratio can be predicted from the leptonic

branching ratios: Rτ =
1− Be − Bµ

Be

� using lepton-universality Bµ and Be can be used to predict each other:

Bµ =
Γµ

Γe
Be,

Γµ

Γe
= 0.9726

� and again asuming lepton-universality the τ lifetime can be used to

predict the hadronic decay ratio too: Rτ =
1
Γe

1
ττ

− 1− Γµ

Γe
,

Γe = 4.0329 · 10−13 GeV

� PDG 2004: ττ = (290.6± 1.1)× 10−15 s

Be = (17.84± 0.06)%

Bµ = (17.36± 0.06)%

Rτ = 3.635± 0.012
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Measurements � Hadronic Branching Ratios
� 7 most important non-strange decay modes

� odd number of pions: axial-vector (A)

� even number of pions: vector (V)

� PDG 2004: Bπ = (11.06 ± 0.11)% (A)

B
ππ0 = (25.42 ± 0.14)% (V)

B3π = ( 9.15 ± 0.10)% (A)

B
π2π0 = ( 9.17 ± 0.14)% (A)

B3ππ0 = ( 4.25 ± 0.09)% (V)

B
π3π0 = ( 1.08 ± 0.10)% (V)

B3π2π0 = ( 0.54 ± 0.04)% (A)

. . .

BA = (30.35 ± 0.22)% (A)

BV = (31.61 ± 0.23)% (V)

Bstrange = ( 2.918 ± 0.08)%

� including the leptonic Br & lifetime results:

RV+A
τ = 3.472± 0.012
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Measurements � Spectral Functions

� experimental challenge is the
unfolding from detector effects
(measured mass 6= hadron
mass) and cross-feed of the
signal modes (e.g. ππ0

background in the π2π0 channel)
� figure to the right shows

unfolding principle
• A detector response matrix is multiplied

with a MC spectrum modified by a
(regularized) spline function to account for
deviations and added to the predicted
background to fit the observed data
spectrum

• this is done for all 6 signal channels
simultaneously allowing for modifications in
the background shape from cross-feeding
signal channls
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Measurements � Spectral Functions � Mass Spectra

� green (blue) boxes drawn
around 1-prong (3-prong)
modes which are unfolded
simultaneously

� black points show the
measured data (OPAL 98)

� yellow histograms show the
correlated backgrounds from
other signal channels fitted
simultaneously

� red histograms show the
un-correlated backgrounds

� dashed lines show τ -MC
without fit

� open histograms show the fit
results

� vector (axial-vector) channels
on the left (right)
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Measurements � Spectral Functions � Results

� ALEPH and OPAL measured the non-strange A/V spectral functions and
more recently the strange spectral function

� plots below show the non-strange spectral functions (V, A, V+A)
� note the strong bin-to-bin correlations due to the unfolding procedure
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QCD Fits � Non-Perturbative Corrections

� The combined fit of moments of RV/A
τ or RV+A

τ allows to establish the
non-perturbative corrections

� the non-perturbative contributions of the vector (V) and axial-vector (A)
part almost cancel each other in the combined (V+A) case

V ∧ A V+A

Parameter Value Exp. Error Value Exp. Error

αs(m2
τ ) 0.347 ±0.012 0.348 ±0.009

〈GG〉(GeV4) 0.001 ±0.008 −0.001 ±0.012

δ6
V 0.0256 ±0.0034 – –

δ6
A −0.0197 ±0.0033 – –

δ8
V −0.0080 ±0.0013 – –

δ8
A 0.0041 ±0.0019 – –

δ6
V+A – – 0.0012 ±0.0056

δ8
V+A – – −0.0010 ±0.0033
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QCD Fits � OPE Quality

� Extrapolate the result
from the fit at m2

τ to lower
scales
• The decay ratio of a

hypothetical τ ′-lepton
RV+A

τ ′ vs. s0 = m2
τ ′

� Compare with integral
over measured spectral
functions with adapted
kinematical factor
m2

τ → m2
τ ′

� OPE describes the data
well down to ∼ 1.5 GeV2
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QCD Fits � Perturbative Corrections

� The following ingredients improved since the last measurements of
ALEPH and OPAL (1998) :

• ∆RV+A
τ reduced by a factor 2

∗ Updated Branching ratios, lifetime (CLEO and LEP I)
• ∆K4 reduced by a factor 2
∗ Partial calculations of K4 = 27± 16 (Baikov, Chetyrkin, and Kühn

(2002))
∗ I will use ∆K4 = ±25 instead of ∆K4 = ±50 which was used

1998

� New theoretical arguments
• CIPT has smaller error than generalized FOPT and RCPT
• The averages of generalized FOPT and RCPT agree with CIPT

� There are no new shape measurements (spectral functions)

• Take the result for δV+A
non-pert = −0.0024± 0.0025 from CIPT fit from

OPAL 1998
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QCD Fits � αs(m2
τ)

RV+A
τ = 3SEW|Vud|2

(
1 + δ′

EW + δpert + δnon-pert
)

RV+A
τ = 3.472± 0.012

SEW = 1.0198± 0.0006
Vud = 0.9745± 0.0004
δ′EW = 0.0010

δnon-pert = −0.0024± 0.0025

δpert = 0.1964± 0.0041Br,ττ
± 0.0025non-pert ± 0.0010Vud ± 0.0007EW

K4 = 25± 25

−µ2/m2
τ = 1± 0.6

αs(m2
τ) = 0.3444± 0.0058exp ± 0.0062K4 ± 0.0050µ ± 0.0033non-pert
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QCD Fits � αs(m2
τ) � αs(m2

Z)
αs(m2

τ) = 0.3444± 0.0058exp ± 0.0086theo

� The β-function can be used to evolve this result to the Z0-mass for
comparison to other αs measurements

� The relative uncertainty of αs shrinks like αs itself after evolution
• that is the main reason why measurements at low mass-scales give

smaller errors

� Evolution principle:
• αs(m2

τ )(nf=3) → αs(m2
τ )(nf=4)

• αs(m2
τ )(nf=4) → αs(m2

b)
(nf=4)

• αs(m2
b)

(nf=4) → αs(m2
b)

(nf=5)

• αs(m2
b)

(nf=5) → αs(m2
Z)

(nf=5)

• Variation of thresholds and quark-masses gives
evolution error

 (GeV)s
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 (GeV)s
10 210

sα
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αs(m2
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QCD Fits � αs(m2
τ) � Comparison of αs Measurements

� From full fit to the
moments and ALEPH
spectral functions by
Davier, Höcker, Zhang,
hep-ph/0507078 one gets
αs(m2

τ ) = 0.345±
0.004exp ± 0.009theo

� compare with αs

compilation by Bethke,
Nucl. Phys. (Proc. Suppl.)
135 (2004) 354.
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Conclusions

� Hadronic τ -decays lead to one of the most precise
measurements of αs

• progress in both experimental and theoretical input
• total uncertainty still dominated by theory

� Many other important QCD tests can be done with τ -decays

• CVC tests from comparisons to e+e- → hI=1 data
• Chiral sum rule tests from integrals over (weighted) differences of

vector and axial-vector spectral functions
• Running of αs below the τ -mass
• Freezing of αs for s → 0?

:-)
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