QCD in τ Decays

Sven Menke, MPI München

19. July 2005, Ringberg Workshop

lm(s)

 $|\mathbf{s}| = \mathbf{m}_r^2$

Re(s)

• Hadronic au Decays

- How a lepton can be sensitive to QCD
- Perturbative QCD Methods
 - Fixed Order Perturbation Theory
 - Contour Improved Perturbation Theory
 - Renormalon Chain Perturbation Theory
- Non-Perturbative QCD Methods
 - Operator Product Expansion
- Measurements
 - Branching Ratios
 - Spectral Functions

QCD Fits

► The τ -lepton with $m_{\tau} = 1.777 \, \text{GeV}$ is the only lepton heavy enough to decay into hadrons

► The hadronic decay ratio of the τ is defined as: $R_{\tau} = \frac{\Gamma(\tau \rightarrow \nu_{\tau} \text{ hadrons})}{\Gamma(\tau \rightarrow \nu_{\tau} \text{ e} \overline{\nu}_{e})}$

► the naive expectation is just the number of colors: $R_{\tau} = N_C \left(|V_{ud}|^2 + |V_{us}|^2 \right) = 3$

> experimentally one finds a 20 % larger value: $R_{\tau} = 3.635$

Hadronic τ Decays $\succ dR_{\tau}/ds$

- > The hadronic decay spectrum of the τ , dR_{τ}/ds i.e. the spectrum of the squared masses of the hadrons the τ decays into shows this sensitivity
- perturbative QCD is repsonsible for the total increase of 20 %
- non-perturbative QCD is repsonsible for the observed resonance structure

Perturbative QCD Methods in Hadronic **7** Decays

- Use the optical theorem:
 - The differential decay width dr/ds for the τ going into hadrons is proportional to the imaginary part of the vacuum polarization Im⊓ (also called spectral function) of the W propagator
 - this means it is enough to calculate the inclusive vacuum polarization of the W instead of every single final state of the hadronic τ decays

Perturbative QCD Methods in Hadronic 7 Decays > Cauchy

Use the Cauchy theorem:

- since ⊓ is analytic (except for the real positive s-axis where it might have poles) in the entire complex s-plane
- and due to the identity $\text{Im}\Pi(s_+ + i\epsilon) = \frac{1}{2i}(\Pi(s_+ + i\epsilon) \Pi(s_+ i\epsilon))$

• the integral along the real positive *s*-axis can be expressed as a circular integral at $|s| = m_{\tau}^2$

• this means all QCD calculations are done at a well defined rather high scale $|s| = m_{\tau}^2$ over the vacuum polariztion amplitude

- All the dynamics of the vacuum polarization amplitude is in its logarithmic derivative, the so-called Adler-function: $D(s) = -s \frac{d\Pi(s)}{ds}$
- ► the Adler-function can be written as polynomial in the strong coupling constant α_s : $D(s) = \frac{1}{4\pi^2} \sum_{n=0}^{\infty} K_n \left(\frac{\alpha_s(-s)}{\pi}\right)^n$, where the K_n are known up to n = 3 and K_4 is partially known:

$$\begin{aligned}
& \mathcal{K}_{0} &= 1 \\
& \mathcal{K}_{1} &= 1 \\
& \mathcal{K}_{2} &= \frac{299}{24} - 9\zeta(3) = 1.63982 \dots \\
& \mathcal{K}_{3} &= \frac{58057}{288} - \frac{779}{4}\zeta(3) + \frac{75}{2}\zeta(5) = 6.37101 \dots \\
& \mathcal{K}_{4} &\simeq 25 \pm 25
\end{aligned}$$

Convert the contour integral over ⊓(s) via partial integration in a contour integral over D(s)

$$\oint_{\substack{s|=m_{\tau}^2}} \mathrm{d}s \, g(s) \, \Pi(s) = \oint_{\substack{|s|=m_{\tau}^2}} \frac{\mathrm{d}s}{s} \left[G(s) - G(m_{\tau}^2) \right] (-s) \frac{\mathrm{d}}{\mathrm{d}s} \Pi(s)$$

$$= \oint_{\substack{|s|=m_{\tau}^2}} \frac{\mathrm{d}s}{s} \left[G(s) - G(m_{\tau}^2) \right] D(s)$$

• where the polynomial
$$g(s) = 6\pi i \frac{1}{m_{\tau}^2} \left(1 - \frac{s}{m_{\tau}^2}\right)^2 \left(1 + 2\frac{s}{m_{\tau}^2}\right)$$

- has the antiderivative $G(s) = 3\pi i \left(2\frac{s}{m_{\tau}^2} 2\frac{s^3}{m_{\tau}^6} + \frac{s^4}{m_{\tau}^8}\right)$
- note that g(s) describes the J = 1 part only since for massless quarks the scalar and pseudo-scalar parts vanish

$$R_{\tau} = 3\sum_{n=0}^{4} \frac{K_{n}}{2\pi i} \oint_{|s|=m_{\tau}^{2}} \frac{\mathrm{d}s}{s} \left(1 - 2\frac{s}{m_{\tau}^{2}} + 2\frac{s^{3}}{m_{\tau}^{6}} - \frac{s^{4}}{m_{\tau}^{8}}\right) \left(\frac{\alpha_{s}(-s)}{\pi}\right)^{n}$$

- > the perturbative descriptions of hadronic τ decays start all with the same integral given on the previous slide
- they differ in the way the integral is calculated
- ▶ most interesting part is the treatment of $\alpha_s(-s)$ on the circle $|s| = m_\tau^2$
- QCD does not tell us how large α_s(μ²) at a given scale μ is, but QCD does tell us what α_s(μ₁²) at some scale μ₁ is if we know it at some other scale μ₀
- this prediction is made with the so-called β -function:

 $\beta(a_{\rm s}) = \mu^2 \frac{\mathrm{d}a_{\rm s}}{\mathrm{d}\mu^2} = \beta_0 a_{\rm s}^2 + \beta_1 a_{\rm s}^3 + \beta_2 a_{\rm s}^4 + \beta_3 a_{\rm s}^5 + O(a_{\rm s}^6), \text{ with } a_{\rm s} = \frac{\alpha_{\rm s}(\mu^2)}{4\pi},$ and where the β_n are known up to n = 3:

$$\beta_0 = -11 + \frac{2}{3}n_{\rm f}, \qquad \beta_1 = -102 + \frac{38}{3}n_{\rm f}, \qquad \beta_2 = -\frac{2857}{2} + \frac{5033}{18}n_{\rm f} - \frac{325}{54}n_{\rm f}^2,$$

$$\beta_3 = -\frac{149753}{6} - 3564\zeta(3) + \left(\frac{1078361}{162} + \frac{6508}{27}\zeta(3)\right)n_{\rm f} - \left(\frac{50065}{162} + \frac{6472}{81}\zeta(3)\right)n_{\rm f}^2 - \frac{1093}{729}n_{\rm f}^3$$

S. Menke, MPI München

QCD in τ Decays

Perturbative QCD Methods in Hadronic **7** Decays **>** Scale Dependency

- ► The Adler-function shown used K_n for a fixed choice of renormalization scale $-\mu^2 = m_{\tau}^2$
- Physics should not depend on this choice
- ► The truncation of the perturbative series introduces a residual dependency: $\mu^2 \frac{d}{d\mu^2} D(s, \mu^2) = 0 + O\left(\alpha_s^5(\mu^2)\right)$
- ► This can be solved for each order with the β -function ($\eta = \ln(-s/\mu^2)$):

$$\begin{split} & \mathcal{K}_{0}(\eta) = \mathcal{K}_{0} \\ & \mathcal{K}_{1}(\eta) = \mathcal{K}_{1} \\ & \mathcal{K}_{2}(\eta) = \mathcal{K}_{2} + \frac{\beta_{0}}{4}\eta \\ & \mathcal{K}_{3}(\eta) = \mathcal{K}_{3} + \left(\frac{\beta_{1}}{16} + \frac{\beta_{0}}{2}\mathcal{K}_{2}\right)\eta + \frac{\beta_{0}^{2}}{16}\eta^{2} \\ & \mathcal{K}_{4}(\eta) = \mathcal{K}_{4} + \left(\frac{\beta_{2}}{64} + \frac{\beta_{1}}{8}\mathcal{K}_{2} + \frac{3\beta_{0}}{4}\mathcal{K}_{3}\right)\eta + \left(\frac{5\beta_{1}\beta_{0}}{128} + \frac{3\beta_{0}^{2}}{16}\mathcal{K}_{2}\right)\eta^{2} + \frac{\beta_{0}^{3}}{64}\eta^{3} \end{split}$$

- Fixed Order Perturbation Theory
 - make Taylor-expansion of $\alpha_s(-s)$ on the circle $|s| = m_\tau^2$ around $\alpha_s(m_\tau^2)$
 - insert Taylor-expansion in the integral which becomes solvable in all orders
 - order the result in powers of $\alpha_s(m_\tau^2)$
 - keep only the terms up to a fixed order in $\alpha_s(m_\tau^2)$

$$R_{\tau} = 3\left(1 + \frac{\alpha_{s}(m_{\tau}^{2})}{\pi} + 5.2023\dots\frac{\alpha_{s}^{2}(m_{\tau}^{2})}{\pi^{2}} + 26.3659\dots\frac{\alpha_{s}^{3}(m_{\tau}^{2})}{\pi^{3}} + (K_{4} + 78.0029\dots)\frac{\alpha_{s}^{4}(m_{\tau}^{2})}{\pi^{4}} + (K_{5} + 14.25K_{4} - 391.542\dots)\frac{\alpha_{s}^{5}(m_{\tau}^{2})}{\pi^{5}} + O(\alpha_{s}^{6})\right)$$

S. Menke, MPI München

 \triangleleft QCD in τ Decays \blacktriangleright

Perturbative QCD Methods in Hadronic 7 Decays > CIPT

Contour Improved Perturbation Theory

- evolve $\alpha_s(-s)$ in small steps numerically using the β -function on the circle $|s| = m_{\tau}^2$
- insert the numerical values in the integral and solve it numerically too
- the result contains integrals over terms of the form

$$s^{k}\left[\left(\frac{\alpha_{s}(m_{\tau}^{2})}{\pi}\right)^{m}\ln^{n}\frac{-s}{m_{\tau}^{2}}\right]^{\prime}, \text{ with } k = 0, 1, 3, 4; l = 1, \dots, 4; m > 4/l$$

(for FOPT up to 4" order), and n = 1, ..., m - 1, which ar neglected in the FOPT approach

plots (real part: left, imaginary part: right) show Taylor-expanded $\alpha_s(s = m_\tau^2 \exp(i\varphi))$ (blue) and numerical result (black) for various orders

S. Menke, MPI München

QCD in τ Decays

Ringberg Workshop

Perturbative QCD ... > CIPT & FOPT compared

- One could compare CIPT and FOPT by simply developing FOPT around a different point on the circle s = m²_τexp(iφ) instead of the usual point φ₀ = 0
- Use $\alpha_s(m_\tau^2 \exp(-i\varphi_0)) = \alpha_s(m_\tau^2 \exp(i\varphi_0))^*$ to split the FOPT integral into 2 half-circle integrals with Taylor-expansions around φ_0 and $-\varphi_0$, respectively
- Plot shows δ_{pert}, the perturbative part of R_τ for generalized FOPT and CIPT as a function of φ₀
- Intrinsic uncertainty for FOPT 3.5× larger than uncertainty from K₄ on CIPT
- Average from FOPT agrees with CIPT

Renormalon Cchain Perturbation Theory

- in the limit that all $\beta_{k,k>0}$ vanish
- and only the terms with the highest power of β_0 are kept
- one can re-write the K_n of the Adler-function as power series in β_0
- keeping only the largest power in β₀ one can re-sum the Adler-function to all orders in α_s up to some Renormalon ambguities

$$\Delta D^{(n)} \propto \frac{\Lambda^{2n}}{s^n}, n=2,3,\ldots$$

this method corresponds to an insertion of fermion loops in the gluon-propagator

RCPT is usually combined with FOPT up to the 3rd order in order to include some known β_{k,k>0} and non-leading β₀ terms

Non-Perturbative QCD Methods in Hadronic **7** Decays **>** OPE

Operator Product Expansion

- the Adler-function describes the perturbative part of the vacuum-polarization only
- systematic way to separate perturbativ short-distance effects from non-perturbative long-distance effects is given by the OPE:

$$\Pi(\boldsymbol{s}) = \sum_{\boldsymbol{D}=0,2,4,\dots} \frac{\mathbf{I}}{(-\boldsymbol{s})^{D/2}} \sum_{\dim(\boldsymbol{O})=\boldsymbol{D}} C(\boldsymbol{s},\mu) \langle O(\mu) \rangle$$

- $C(s, \mu)$ are perturbative factors (Wilson-coefficients)
- (O(s, μ)) are kondensates (vacuum-expectation values) of local operators and contain the non-perturbative parts
- D = 0 corresponds to the perturbative part for massless quarks
- D = 2 corresponds to quark-mass corrections (small for non-strange τ -decays)
- D = 4, 6, 8, ... are the dimensions for the so-called power corrections with non-trivial vacuum-expecation values of the operators (O)

S. Menke, MPI München

d(p)

 $\langle \overline{\psi}_{u} \psi_{u} \rangle$

u(-p₁)

 $d(p_2)$

- use different weighting polynomials $p^{kl}(s) = \left(1 \frac{s}{m_{\tau}^2}\right)^k \left(\frac{s}{m_{\tau}^2}\right)^l$ to project out different parts of the power corrections (Cauchy)
- ► usually 5 moments kl = 00, 10, 11, 12, 13 are used to constrain 4 variables $\alpha_s(m_\tau^2), \delta^4, \delta^6, \delta^8$.

$$\delta^{D,kl} = 8\pi^2 \sum_{\substack{dim(O)=D}} \frac{C(\mu)\langle O(\mu) \rangle}{m_{\tau}^D} \begin{pmatrix} 1 & 0 & -3 & -2 & 0 \\ 1 & 1 & -3 & -5 & -2 \\ 0 & -1 & -1 & 3 & 5 \\ 0 & 0 & 1 & 1 & -3 \\ 0 & 0 & 0 & -1 & -1 \end{pmatrix} \begin{pmatrix} 00 \\ 11 \\ 11 \\ 11 \\ 12 \\ 13 \end{pmatrix}$$

- contributions for D > 8 do not contribute to R_{τ}
- the D = 2 quark-mass corrections are purely perturbative again and can be calculated

$$R_{\tau}^{kl} = \int_{0}^{m_{\tau}^{2}} \mathrm{d}s \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{k} \left(\frac{s}{m_{\tau}^{2}}\right)^{l} \frac{\mathrm{d}R_{\tau}}{\mathrm{d}s} = 3 \left(1 + \delta_{\text{pert}}^{kl} + \sum_{D=2,4,6,8,\dots} \delta^{D,kl}\right)^{l}$$

 \triangleleft QCD in τ Decays \blacktriangleright

- From the discussion of the theory the following requirements for the measurements emerge
 - We need the total decay rate R_{τ} for the perturbative part
 - We need the spectrum dR_{τ}/ds to define the moments for the non-perturbative parts
 - since the mass of the strange quark is not small it is best to restrict the measurments to the non-strange decays of the τ
 - To enhance the tests of non-perturbative QCD one can even separate axial-vector (A) and vector (V) decays
 - All perturbative predictions (D = 0) remain the same but get in addition a factor $|V_{ud}|^2$ for non-strange decays and a factor 1/2 for the separation into V/A
 - The non-perturbative power corrections (D > 0) receive the same factors as above but also the δ^D_{V/A} will differ

Measurements Leptonic Branching Ratios and Lifetime

The total hadronic decay ratio can be predicted from the leptonic branching ratios: $R_{\tau} = \frac{1 - B_{\rm e} - B_{\mu}}{B_{\rm e}}$

► using lepton-universality B_{μ} and B_{e} can be used to predict each other: $B_{\mu} = \frac{\Gamma_{\mu}}{\Gamma_{e}} B_{e}, \ \frac{\Gamma_{\mu}}{\Gamma_{e}} = 0.9726$

► and again asuming lepton-universality the τ lifetime can be used to predict the hadronic decay ratio too: $R_{\tau} = \frac{1}{\Gamma_{e}} \frac{1}{\tau_{\tau}} - 1 - \frac{\Gamma_{\mu}}{\Gamma_{e}}$, $\Gamma_{e} = 4.0329 \cdot 10^{-13} \text{ GeV}$

PDG 2004:

 $au_{ au} = (290.6 \pm 1.1) \times 10^{-15} \, {
m s}$ $B_{
m e} = (17.84 \pm 0.06) \, \%$ $B_{\mu} = (17.36 \pm 0.06) \, \%$

$R_{\tau} = 3.635 \pm 0.012$

S. Menke, MPI München

 \triangleleft QCD in τ Decays \blacktriangleright

Measurements > Hadronic Branching Ratios

- 7 most important non-strange decay modes
- odd number of pions: axial-vector (A)
- even number of pions: vector (V)
- PDG 2004:

B_{π}	=	$(11.06 \pm 0.11)\%$	(A)
$B_{\pi\pi^0}$	=	$(25.42\pm0.14)\%$	(V)
$B_{3\pi}$	=	$(9.15\pm0.10)\%$	(A)
$B_{\pi 2\pi 0}$	=	$(9.17 \pm 0.14)\%$	(A)
$B_{3\pi\pi^0}$	=	$(4.25 \pm 0.09)\%$	(V)
$B_{\pi 3\pi 0}$	=	(1.08 ± 0.10) %	(V)
$B_{3\pi 2\pi 0}$	=	$(0.54 \pm 0.04)\%$	(A)
B _A	=	$(30.35\pm 0.22)\%$	(A)
B _V	=	(31.61 ± 0.23) %	(V)
B _{strange}	=	$(2.918 \pm 0.08)\%$	

including the leptonic Br & lifetime results:

 $R_{\tau}^{V+A} = 3.472 \pm 0.012$

S. Menke, MPI München

QCD in τ Decays

Measurements > Spectral Functions

- experimental challenge is the unfolding from detector effects (measured mass \neq hadron mass) and cross-feed of the signal modes (e.g. $\pi\pi^0$ background in the $\pi 2\pi^0$ channel)
- figure to the right shows unfolding principle
 - A detector response matrix is multiplied with a MC spectrum modified by a (regularized) spline function to account for deviations and added to the predicted background to fit the observed data spectrum
 - this is done for all 6 signal channels simultaneously allowing for modifications in the background shape from cross-feeding signal channls

S. Menke, MPI München

\triangleleft QCD in τ Decays \blacktriangleright

Ringberg Workshop

Measurements > Spectral Functions > Mass Spectra

- green (blue) boxes drawn around 1-prong (3-prong) modes which are unfolded simultaneously
- black points show the measured data (OPAL 98)
- yellow histograms show the correlated backgrounds from other signal channels fitted simultaneously
- red histograms show the un-correlated backgrounds
- dashed lines show *τ*-MC without fit
- open histograms show the fit results
- vector (axial-vector) channels on the left (right)

S. Menke, MPI München

QCD in τ Decays

Measurements > Spectral Functions > Results

- ALEPH and OPAL measured the non-strange A/V spectral functions and more recently the strange spectral function
- plots below show the non-strange spectral functions (V, A, V+A)

note the strong bin-to-bin correlations due to the unfolding procedure

QCD Fits > Non-Perturbative Corrections

- The combined fit of moments of $R_{\tau}^{V/A}$ or R_{τ}^{V+A} allows to establish the non-perturbative corrections
- the non-perturbative contributions of the vector (V) and axial-vector (A) part almost cancel each other in the combined (V+A) case

	V	$\wedge A$	V+A	
Parameter	Value	Exp. Error	Value	Exp. Error
$\alpha_{s}(m_{\tau}^{2})$	0.347	±0.012	0.348	± 0.009
$\langle GG \rangle (\text{GeV}^4)$	0.001	± 0.008	-0.001	±0.012
$\delta_{\sf V}^{\sf 6}$	0.0256	± 0.0034	—	—
δ_{A}^{6}	-0.0197	± 0.0033	—	—
δ_{V}^{8}	-0.0080	± 0.0013	—	—
δ_{A}^{8}	0.0041	± 0.0019	—	—
δ^{6}_{V+A}	_	_	0.0012	± 0.0056
δ^{8}_{V+A}	_	_	-0.0010	±0.0033

S. Menke, MPI München

 \triangleleft QCD in τ Decays \triangleright

Ringberg Workshop

QCD Fits > OPE Quality

- Extrapolate the result from the fit at m_{τ}^2 to lower scales
 - The decay ratio of a hypothetical τ' -lepton $R_{\tau'}^{V+A}$ vs. $s_0 = m_{\tau'}^2$
- Compare with integral over measured spectral functions with adapted kinematical factor $m_{\tau}^2 \rightarrow m_{\tau'}^2$
- OPE describes the data well down to $\sim 1.5 \, {\rm GeV}^2$

- The following ingredients improved since the last measurements of ALEPH and OPAL (1998) :
 - ΔR_{τ}^{V+A} reduced by a factor 2
 - * Updated Branching ratios, lifetime (CLEO and LEP I)
 - $\triangle K_4$ reduced by a factor 2
 - * Partial calculations of $K_4 = 27 \pm 16$ (Baikov, Chetyrkin, and Kühn (2002))
 - * I will use $\Delta K_4 = \pm 25$ instead of $\Delta K_4 = \pm 50$ which was used 1998
- New theoretical arguments
 - CIPT has smaller error than generalized FOPT and RCPT
 - The averages of generalized FOPT and RCPT agree with CIPT
- There are no new shape measurements (spectral functions)
 - Take the result for $\delta_{non-pert}^{V+A} = -0.0024 \pm 0.0025$ from CIPT fit from OPAL 1998

QCD Fits $\triangleright \alpha_{s}(m_{\tau}^{2})$

$$R_{\tau}^{V+A} = 3S_{EW}|V_{ud}|^2 \left(1 + \delta'_{EW} + \delta_{pert} + \delta_{non-pert}\right)$$

$R^{V+A}_{m{ au}}$	=	3.472 ± 0.012
\mathcal{S}_{EW}	=	1.0198 ± 0.0006
$V_{\sf ud}$	=	0.9745 ± 0.0004
$\delta_{\sf EW}'$	=	0.0010
$\delta_{non-pert}$	=	-0.0024 ± 0.0025

 $\delta_{\text{pert}} = 0.1964 \pm 0.0041_{\text{Br},\tau_{\tau}} \pm 0.0025_{\text{non-pert}} \pm 0.0010_{V_{\text{ud}}} \pm 0.0007_{\text{EW}}$

$$egin{array}{rcl} K_4 &=& 25\pm25\ -\mu^2/m_{m au}^2 &=& 1\pm0.6 \end{array}$$

 $\alpha_{s}(m_{\tau}^{2}) = 0.3444 \pm 0.0058_{exp} \pm 0.0062_{K_{4}} \pm 0.0050_{\mu} \pm 0.0033_{non-pert}$

S. Menke, MPI München

 \triangleleft QCD in τ Decays \blacktriangleright

QCD Fits $\succ \alpha_{s}(m_{\tau}^{2}) \succ \alpha_{s}(m_{Z}^{2})$ $\alpha_{s}(m_{\tau}^{2}) = 0.3444 \pm 0.0058_{exp} \pm 0.0086_{theo}$

- The β -function can be used to evolve this result to the Z⁰-mass for comparison to other α_s measurements
- > The relative uncertainty of α_s shrinks like α_s itself after evolution
 - that is the main reason why measurements at low mass-scales give smaller errors
- Evolution principle:
 - $\alpha_{s}(m_{\tau}^{2})^{(n_{f}=3)} \rightarrow \alpha_{s}(m_{\tau}^{2})^{(n_{f}=4)}$
 - $\alpha_{s}(m_{\tau}^{2})^{(n_{f}=4)} \rightarrow \alpha_{s}(m_{b}^{2})^{(n_{f}=4)}$
 - $\alpha_{s}(m_{b}^{2})^{(n_{f}=4)} \rightarrow \alpha_{s}(m_{b}^{2})^{(n_{f}=5)}$

•
$$\alpha_{s}(m_{b}^{2})^{(n_{f}=5)} \rightarrow \alpha_{s}(m_{Z}^{2})^{(n_{f}=5)}$$

• Variation of thresholds and quark-masses gives evolution error

$lpha_{ m s}(m_{ m Z}^2) = 0.12153 \pm 0.00065_{ m exp} \pm 0.00097_{ m theo} \pm 0.00030_{ m evol}$

S. Menke, MPI München

 \triangleleft QCD in τ Decays \blacktriangleright

Ringberg Workshop

QCD Fits $\triangleright \alpha_{s}(m_{\tau}^{2}) \triangleright$ Comparison of α_{s} Measurements

From full fit to the moments and ALEPH spectral functions by Davier, Höcker, Zhang, hep-ph/0507078 one gets $\alpha_{s}(m_{\tau}^{2}) = 0.345 \pm 0.004_{exp} \pm 0.009_{theo}$

compare with α_s
 compilation by Bethke,
 Nucl. Phys. (Proc. Suppl.)
 135 (2004) 354.

Conclusions

- Hadronic τ -decays lead to one of the most precise measurements of α_s
 - progress in both experimental and theoretical input
 - total uncertainty still dominated by theory

> Many other important QCD tests can be done with τ -decays

- CVC tests from comparisons to $e^+e^- \rightarrow h^{\prime=1}$ data
- Chiral sum rule tests from integrals over (weighted) differences of vector and axial-vector spectral functions
- Running of α_s below the τ -mass
- Freezing of α_s for $s \rightarrow 0$?