

PITHA 89/21
Oktober 1989

Suche nach Oszillationen atmosphärischer Neutrinos mit dem Fréjus-Detektor

RICHARD NISIUS

PHYSIKALISCHE INSTITUTE
RWTH AACHEN
Sommerfeldstr.
51 AACHEN, FR GERMANY

Suche nach Oszillationen atmosphärischer Neutrinos mit dem Fréjus-Detektor

von
Richard Nisius

Diplomarbeit in Physik
vorgelegt der
Mathematisch-Naturwissenschaftlichen Fakultät der Rheinisch-Westfälischen Technischen Hochschule Aachen im Oktober 1989
angefertigt im
I. Physikalischen Institut

\square

Eine Arbeit zum
Fréjus Untertage Experiment
.

Inhalt

1 Einleitung 3
1.1 Die Motivation 3
1.2 Der Gang der Dinge 4
2 Neutrinos, woher sie stammen und was ihnen widerfahren kann 7
2.1 Die atmosphärischen Neutrinos 7
2.2 Die Neutrino-Oszillationen 9
2.2.1 Das Geschehen im Vakuum 9
2.2.2 Materie kommt ins Spiel 11
3 Die Maschine und ihr Weg zur Erlangung der Daten 14
3.1 Das Detektordesign 14
3.2 Ein Ereignis entsteht 16
3.3 Die gemessenen Ereignissorten 18
3.3.1 Die Neutrino Reaktionen 22
4 Vom Neutrino durch den Computer zum Ereignis 27
4.1 Das Neutrino-Simulationsprogramm 27
4.1.1 Der Generator 28
4.1.2 Die Flußparametrisierung 31
4.1.3 Die Kerneffekte 33
4.2 Die Detektorsimulation 34
5 Vom Leben des Einzelnen 38
5.1 Die Teilchenrekonstruktion 38
5.1.1 Die Spur/Schauer-Trennung 38
5.1.2 Die Spursichtbarkeit 39
5.1.3 Die Muon/Pion-Trennung 40
5.1.4 Die Elektron/Photon-Trennung 41
5.1.5 Die Neutronen 42
5.1.6 Die Energie- und Winkelrekonstruktion 42
6 ...zur Vermessung des Ganzen 45
6.1 Die Vermessung von Hand 45
6.2 Der Vergleich mit der automatischen Rekonstruktion 45
6.3 Vom Säubern und Sortieren 48
6.3.1 Die Containmententscheidung 49
6.3.2 Die Säuberung vom Untergrund 51
6.3.3 Die Einteilung in die Neutrino-Reaktionsklassen 53
6.4 Die Ereigniszahlen der Simulation 55
6.5 Die Güte der Rekonstruktion 55
6.5.1 Die Flavorerkennung 56
6.5.2 Die Rekonstruktion von Neutrino-Energie und Richtung 57
7 Modell und Experiment treffen aufeinander 62
8 Neutrino-Oszillationen ernst genommen 68
8.1 Die Oszillationswahrscheinlichkeit 69
8.2 Die Gewichtung 75
8.3 Der Einfluß der Entstehungshöhe 76
8.4 Der Einfluß der Flavorerkennung 77
8.5 Der Vergleich zwischen Materie- und Vakuum-Oszillationen 79
8.6 Der Einfluß des Dichtemodells der Erde 82
8.7 Die Erlangung der Ausschlußgrenzen 85
8.8 Die Variation der Ausschlußgrenzen 89
8.9 Der Vergleich mit anderen Experimenten 95
8.10 Die Zusammenfassung 99
Referenzen 101
Liste der Abbildungen 106
Liste der Tabellen 107
Danksagung 108
Lebenslauf 109

1 Einleitung

1.1 Die Motivation

Neutrinos (ν), 1930 von Wolfgang Pauli [1], damals noch unter dem Namen Neutron, als ruhemasselose, neutrale Spin $1 / 2$ Teilchen postuliert, dienten zuerst als theoretisch motivierte Hypothese zur Rettung von Impuls- und Drehimpulserhaltung im Betazerfall der Atomkerne. Da Neutrinos nur an der schwachen Wechselwirkung (sWw) teilnehmen, gelang es ihnen, sich dem experimentellen Nachweis bis 1953 zu entziehen. Das Experiment von Cowan und Reines [2] lieferte zum ersten Mal den Nachweis der Existenz von Neutrinos. In vielen weiteren Experimenten wurden den Neutrinos ihre Geheimnisse entlockt und $z u$ unserem heutigen Verständnis in Form des Standardmodells zusammengefügt.

Im Rahmen des Standardmodells existieren drei masselose, linkshändige Neutrinos als Eigenzustände zur sWw (Flavoreigenzustände), die jeweils in Dubletts mit ihren zugehörigen linkshändigen, negativ geladenen Leptonen angeordnet sind (Abb. 1).

$$
\binom{\nu_{e}}{e^{-}}\binom{\nu_{\mu}}{\mu^{-}}\binom{\nu_{\tau}}{\tau^{-}}
$$

Abbildung 1: Die Lepton-Dubletts der schwachen Wechselwirkung
Alle bisherigen Messungen, mit Ausnahme des Ergebnisses vom ITEP [3], liefern keine Hinweise auf eine von Null verschiedene Ruhemasse m_{i} für die Neutrinos $i=\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right)$. Die besten oberen Grenzen [4] für die Neutrinomassen sind in (Tab. 1) aufgelistet.

Nicht verschwindende Ruhemassen der Neutrinos hätten jedoch weitreichende Folgen sowohl für kosmologische Fragestellungen, als auch für unerklärte Messungen auf dem Gebiet der Elementarteilchen-Physik. So könnten sie darüber entscheiden, ob das Universum als offen oder geschlossen angesehen werden muß, und zur Lösung des Sonnen-Neutrino-Rätsels beitragen. Unter dem Sonnen-Neutrino-Rätsel versteht man das im Chlorexperiment von Davis [5] gemessene Defizit an ν_{e} Neutrinos aus dem ${ }^{8}$ B Zerfall in der Sonne im Vergleich zu Vorhersagen aus dem Standard-Sonnenmodell [6]. Deswegen ist die Annahme einer nichtverschwindenden Ruhemasse Grundlage für theoretische Modelle und Motivation für Präzisionsmessungen mit verschiedenster

Flavor	Masse		
ν_{e}	18	$\mathrm{eV} / \mathrm{c}^{2}$	Zürich
ν_{μ}	250	$\mathrm{keV} / \mathrm{c}^{2}$	Los Alamos
ν_{τ}	35	$\mathrm{MeV} / \mathrm{c}^{2}$	Argus

Tabelle 1: Die oberen Grenzen der Neutrinomassen [4]

Technik geworden. Neutrino-Oszillations-Experimente testen sehr kleine Massendifferenzen die z.B. für Beta-Zerfalls-Experimente nicht mehr meßbar sind, da diese absolute Massen bestimmen.

In dieser Arbeit soll den Neutrinos die Eigenschaft Masse zu tragen gewährt sein. Davon ausgehend werden die Konsequenzen der Theorie der Oszillationen im Vakuum und der materieverstärkten Neutrino-Oszillationen (MSW-Effekt) (Kap. 2.2.2) für das gemessene Neutrinospektrum eines Unter-tage-Detektors diskutiert. Beobachtet werden die in der Erdatmosphäre erzeugten Neutrinos, als Probekörper dient die Erde selber und als Nachweisgerät der Untertage-Detektor der Fréjus-Gruppe. Dies alles zusammen gab der Arbeit ihren Namen.

1.2 Der Gang der Dinge

Zur leichteren Orientierung sei der Aufbau dieser Arbeit hier kurz umrissen. Das zweite Kapitel beschäftigt sich im ersten Teil (Kap. 2.1) mit der Entstehung der Neutrinos durch Reaktionen der Konstituenten der kosmischen Strahlung mit den Molekülen der Erdatmosphäre und den grundlegenden Eigenschaften des zu erwartenden Neutrinoflusses am Detektorort. Der zweite Teil (Kap. 2.2) ist der Theorie der Neutrino-Oszillationen in Vakuum (Kap. 2.2.1) und Materie (Kap. 2.2.2) gewidmet.

Das dritte Kapitel erläutert den Aufbau, (Kap. 3.1) und die Funktionsweise (Kap. 3.2) des Fréjus-Detektors und führt die in ihm erzeugten Ereignissorten ein (Kap. 3.3).

Die für das Verständnis dieser Ereignisse notwendige Simulation der Neutrinowechselwirkungen im Fréjus-Detektor ist das Thema des (Kap. 4.1). Daran anschließend wird die Detektorsimulation beschrieben (Kap. 4.2), die durch Verfolgung der sekundären Teilchen durch den Detektor, und Simulation ihrer Wechselwirkungen, Muster gesetzter Zellen erzeugt.

Im (Kap. 5) wird aufgezeigt wie gut aus den Mustern gesetzter Zellen auf das sie erzeugende Teilchen geschlossen werden kann.

Nach der Untersuchung von Einzelstrukturen wendet sich (Kap. 6) den Gesamtereignissen zu. Dieser Abschnitt beschäftigt sich hauptsächlich mit den simulierten Ereignissen, lediglich in (Kap. 6.3) wird die Behandlung von Experiment und Simulation parallel beleuchitet.

Zwei Möglichkeiten der Vermessung der Ereignisse werden vorgestellt, die Handvermessung und die automatische Rekonstruktion. Ihre Austauschbarkeit für die Anforderungen dieser Analyse demonstriert Kapitel (Kap. 6.2).

Um die simulierten Ereignisse mit den Fréjus-Ereignissen vergleichen zu können müssen einige Ereignisklassen, sowohl bei der Simulation, als auch bei den Fréjus-Ereignissen verworfen werden (Kap. 6.3.2). Ein Teil der FréjusEreignisse muß mit Gewichten versehen werden (Kap. 6.3.2).

Die gemeinsamen Kriterien zur Einteilung in die Reaktionsklassen entwickelt Kapitel (Kap. 6.3.3).

Wie gut aus den Gesamtereignissen auf die generierte Neutrinowechselwirkung zurückgeschlossen werden kann zeigt Kapitel (Kap. 6.5). Nachdem die Beschreibung der Simulation abgeschlossen ist folgt der Vergleich der FréjusEreignisse mit der Simulation (Kap. 7). Vergleichsgrößen sind die totalen Ereigniszahlen, die Multiplizitäts-, die Energie- und Zenitwinkel-Verteilungen.

Im achten Kapitel werden die Konsequenzen von Neutrino-Oszillationen auf das Verhältnis der gemessenenen Reaktionen des geladenen Stromes der Elektron- und Muonneutrinos diskutiert. Das Kapitel (Kap. 8.1) geht auf die numerische Bestimmung der Oszillationswahrscheinlichkeit ein und zeigt auf, wie sie sich bei Variation der Parameter der Theorie ($\Delta m_{\text {vak }}^{2}, \sin ^{2} 2 \vartheta_{v a k}$) und bei Variation der Neutrino-Trajektorie verändert.

Daran anschließend erfolgt die Erläuterung des Verfahrens zur Berechnung der erwarteten Ereignisraten des Fréjus-Detetektors unter Berücksichtigung der Neutrino-Oszillationen (Kap. 8.2).

Den Einfluß verschiedener Entstehungshöhen der Neutrinos in der Atmosphäre und die Auswirkungen der nicht hundertprozentigen Flavorerkennung studieren die Kapitel (Kap. 8.3) und (Kap. 8.4). Nachdem der Vergleich zwischen Vakuum- und Materie-Oszillationen behandelt wurde (Kap. 8.5), erläutert (Kap. 8.6) die Unterschiede zwischen verschiedenen Modellen des Verlaufes der Erddichte. Das Kapitel (Kap. 8.7) beschreibt die Bestimmung der Bereiche der Parameterebene ($\Delta m_{v a k}^{2}, \sin ^{2} 2 \vartheta_{v a k}$), die durch das FréjusExperiment ausgeschlossen werden können. Die durch diese Analyse ermittelten Ausschließungskurven sind dort abgebildet.

Ihre Sensitivität auf systematische Unsicherheiten des Experimentes, den Entstehungsort der Neutrinos, das Erdmodell und die statistische Analysemethode, ist Thema des Kapitels (Kap. 8.8).

Den Abschluß (Kap. 8.9) bildet der Vergleich mit anderen Neutrino-Oszillations-Experimenten die mit Untertage-Detektoren, Beschleunigern und Kernreaktoren durchgeführt wurden.

2 Neutrinos, woher sie stammen und was ihnen widerfahren kann

2.1 Die atmosphärischen Neutrinos

Die Erde ist ständig dem Einfluß kosmischer Strahlung ausgesetzt. Die in der Strahlung vorhandenen schweren Kerne werden in dem dieser Arbeit zugrundeliegenden Modell als unabhängige Nukleonen betrachtet. Die Strahlung besteht dann im Energiebereich von (2-500) GeV pro Nukleon zu ca. ($80-90$)\% aus Protonen (p), und zu ca. ($20-10$)\% aus Neutronen (n) [7, 8]. Die Nukleonen reagieren mit den Molekülen der äußeren Erdatmosphäre und erzeugen in hadronischen Wechseiwirkungen sekundäre Teilchen, vornehmlich Mesonen. Das am häufigsten erzeugte Meson ist das Pion (π), da es das leichteste ist. Es legt als Hauptlieferant für atmosphärische Neutrinos über seine charakteristische Zerfallskette (Abb. 2) die Flavorzusammensetzung und das Energiespektrum des atmosphärischen Neutrinoflusses im wesentlichen fest.

$$
\begin{aligned}
\pi^{ \pm} \rightarrow & \mu^{ \pm} \\
& +\nu_{\mu}\left(\bar{\nu}_{\mu}\right) \\
\mu^{ \pm} & \rightarrow e^{ \pm}+\nu_{e}\left(\bar{\nu}_{e}\right)+\bar{\nu}_{\mu}\left(\nu_{\mu}\right)
\end{aligned}
$$

Abbildung 2: Die Zerfallskette der Pionen

Unter der Prämisse, daß alle Muonen (μ) zerfallen, ergeben sich folgende Verhältnisse:

$$
\frac{\nu_{\mu}}{\nu_{e}}=2 \quad \frac{\bar{\nu}_{\mu}}{\nu_{\mu}}=1 \quad \frac{\nu_{e}}{\bar{\nu}_{e}}=\frac{\pi^{+}}{\pi^{-}}
$$

Das Verhältnis der geladenen Pionen ist $\frac{\pi^{+}}{\pi^{-}} \approx 1.2$ [7]. Es existieren jedoch zeit-, orts- und zenitwinkelabhängige Effekte, die diesen Idealfall modifizieren.

- Global folgt die Stärke des Erdmagnetfeldes, und damit auch der Nukleonenfluß, antikorreliert dem 11 Jahres Zyklus der Sonnenaktivität, was zu einer zeitabhängigen Schwankung des Neutrinoflusses führt. Dieser Effekt ist zudem energieabhängig und das Verhältnis des Neutrinoflusses für solares Minimum zum Neutrinofluß für solares Maximum beträgt ca. 1.1 bei einer Neutrino-Energie von $E_{\nu}=1 \mathrm{GeV}$.
- Der Neutrinofluß ist eine Funktion der geographischen Breite, da abhängig von dieser die primären, geladenen Nukleonen mit zu kleinen Impulsen durch das Erdmagnetfeld so stark abgelenkt werden, daß sie die Erdatmosphäre nicht erreichen und als Lieferanten atmosphärischer Neutrinos verloren sind. Dieser Effekt ist zusätzlich an jedem Ort zenitwinkelabhängig, denn die ablenkende Kraft ist proportional dem Kosinus des Winkels zwischen Teilchentrajektorie und Erdmagnetfeld.
- Die Länge des Weges der Muonen durch die Atmosphäre ist umgekehrt proportional zum Kosinus des Zenitwinkels der Muonbahn, so daß für wachsende Zenitwinkel auch der Fluß der Neutrinos anwächst, da mehr Muonen zerfallen als bei senkrechtem Einfall.
- Das Muon aus dem Pionzerfall ist im Ruhsystem des Pions vollständig polarisiert, und die Flugrichtung des Elektrons aus dem Muonzerfall ist mit dem Muonspin korreliert. Dieser Effekt beeinflußt die Impulsrichtung der entstehenden Neutrinos und damit das Verhältnis der verschiedenen Neutrinozustände, die an der Erdoberfläche ankommen. Bei Neutrinos der Energie von 1 GeV vergrößert die Berücksichtigung dieses Effekts das Verhältnis von Elektron- zu Muonneutrinos um ca. 18\% [9].
- Kaon- und Hyperonzerfälle tragen zum Neutrinofluß bei.

Aus diesen Zusammenhängen ergibt sich die Notwendigkeit, den Fluß atmosphärischer Neutrinos am Ort des Detektors als Funktion der NeutrinoEnergie (E_{ν}) und des Zenitwinkels (θ_{ν}) zu bestimmen.

In diese Arbeit gehen die Flußdaten von Gaisser und Stanev für die vier Neutrinozustände ($\nu_{e}, \bar{\nu}_{e}, \nu_{\mu}, \bar{\nu}_{\mu}$) im Energiebereich ($0.1 \leq E_{\nu} \leq 20$) GeV ein. Sie wurden von ihnen in Simulationsrechnungen atmosphärischer Schauer unter Berücksichtigung aller oben erwähnten Effekte ermittelt.

Die Autoren[7] geben den Fehler im Fluß der einzelnen Neutrinozustände $\operatorname{mit}(\approx \pm 20 \%)$ an. Der Fehler im Verhältnis $\left(\nu_{e}+\bar{\nu}_{e}\right) /\left(\nu_{\mu}+\bar{\nu}_{\mu}\right)$ ist niedriger, da sich die Flußunsicherheiten teilweise wegheben.

2.2 Die Neutrino-Oszillationen

Im Rahmen des Standardmodells existieren nur masselose Diracneutrinos, die über die $s W w$ als linkshändige Teilchen $\nu_{i}^{\text {links }}$ und rechtshändige Antiteilchen $\bar{\nu}_{i}^{\text {rechts }}(i=e, \mu, \tau)$ mit Materie wechselwirken. Vereinheitlichungstheorien, wie z.B. die $\mathrm{SO}(10)$, führen massive, linkshändige und rechtshändige Neutrinos ein ($\nu^{\text {links }}, \nu^{\text {rechts }}$). Diese neuen Eigenzustände zur sWw sind nicht notwendigerweise auch Eigenzustände zur Masse, was zu Neutrino-Oszillationen führen kann. Der zugrundeliegende Mechanismus sei hier kurz erläutert, wobei Neutrino-Oszillationen im Vakuum (Kap. 2.2.1) und Neutrino-Oszillationen in Materie (Kap. 2.2.2) zu unterscheiden sind.

Im allgemeinen Fall (ausgehend von drei Leptonfamilien), ist ein Eigenzustand zur sWw eine Mischung aus drei Masseneigenzuständen. Der Zusammenhang wird über eine, der Kobayaschi-Maskawa Matrix auf dem Quarksektor analoge, 3×3 Matrix vermittelt.

Diese Betrachtung beschränkt sich jeweils auf zwei massive Flavoreigenzustände und zwei Masseneigenzustände ν_{1} und ν_{2}, die anderen Mischungswinkel werden also jeweils zu Null angenommen.

2.2.1 Das Geschehen im Vakuum

Hier sind drei Kombinationen der Neutrino-Oszillationen möglich:

$$
\nu_{e} \leftrightarrow \nu_{\mu}, \nu_{e} \mapsto \nu_{\tau}, \nu_{\mu} \mapsto \nu_{\tau}
$$

Da der Unterschied nur in der Detektierbarkeit der verschiedenen Neutrinos liegt, seien hier exemplarisch $\nu_{e} \mapsto \nu_{\mu}$ Oszillationen betrachtet (Abb. 3). Die zeitliche Entwicklung eines Masseneigenzustandes i ($\mathrm{i}=1,2$) lautet:

$$
\begin{aligned}
& \left|\nu_{i}(t)\right\rangle & =e^{-i E_{i} t}\left|\nu_{i}(0)\right\rangle & \\
\text { mit }: & E_{i} & =\sqrt{p_{\nu}^{2}+m_{i}^{2}} \approx p_{\nu}+\frac{m_{i}^{2}}{2 p_{\nu}} & \\
\text { bzw: } & E_{i} & \approx E_{\nu}+\frac{m_{i}^{2}}{2 E_{\nu}} & \text { da } m_{i} \ll E_{\nu}
\end{aligned}
$$

ist bei unterschiedlichen Massen der ν_{i} also verschieden.

ν_{1}

Abbildung 3: Die Darstellung der Flavoreigenzustände ν_{e} und ν_{μ} als Mischung der Masseneigenzustände ν_{1} und ν_{2}

Die Flavoreigenzustände sind Mischungen aus den Masseneigenzuständen über den Vakuummischungswinkel ($\vartheta_{\text {vak }}$).

$$
\begin{aligned}
& \left|\nu_{e}(t)\right\rangle=\cos \vartheta_{v a k}\left|\nu_{1}(t)\right\rangle+\sin \vartheta_{v a k}\left|\nu_{2}(t)\right\rangle \\
& \left|\nu_{\mu}(t)\right\rangle=-\sin \vartheta_{v a k}\left|\nu_{1}(t)\right\rangle+\cos \vartheta_{v a k}\left|\nu_{2}(t)\right\rangle
\end{aligned}
$$

Die Entwicklung des Zustandes im Raum findet gemäß der Kinematik eines Teilchens der Masse m_{i} statt, die Reaktionen mit Materie hingegen koppeln jeweils an den "Teil" des Neutrinos, der ν_{e} bzw. ν_{μ} ist. Falls die Masseneigenzustände nicht massendegeneriert sind, also $\Delta m_{v a k}^{2}=m_{2}^{2}-m_{1}^{2} \neq 0$ und zusätzlich $\vartheta_{\text {vak }} \neq 0$ ist, gibt es eine endliche Übergangswahrscheinlichkeit $\nu_{e} \rightarrow \nu_{\mu}$ und umgekehrt, die bei Forderung von CP-Erhaltung identisch sind. Fragt man nach der Wahrscheinlichkeit, ein als ν_{e} gestartetes Neutrino (z.B. aus einem Betazerfall) zur Zeit $t(\equiv \operatorname{am}$ Ort x, da $x=c t, c=1)$ als $\nu_{\mu}(z . B$. durch eine Reaktion $\nu_{\mu} \mathrm{n} \rightarrow \mu^{-} \mathrm{p}$) zu beobachten, so ergibt sich:

$$
\begin{aligned}
P_{\nu_{e} \rightarrow \nu_{\mu}}^{\text {vak }} & =\left|\left\langle\nu_{\mu}(x) \mid \nu_{e}(0)\right\rangle\right|^{2} \\
& =\sin ^{2} 2 \vartheta_{v a k} \sin ^{2}\left(\frac{\Delta m_{\text {atak }}^{2}}{4 E_{\nu}} x\right)
\end{aligned}
$$

Die Amplitude wird bestimmt durch den Vakuummischungswinkel. Die Oszillationslänge ist:

$$
L_{v a k}=\pi \frac{4 E_{V}}{\Delta m_{v a k}^{2}}=\left(2.48 \cdot \frac{E_{V} / \mathrm{MeV}^{2}}{\Delta m_{v a k}^{2} / \mathrm{eV}^{2}}\right) \mathrm{m}
$$

Die Oszillationswahrscheinlichkeit im Vakuum hängt nicht vom Vorzeichen von $\Delta m_{v a k}^{2}$, sondern nur vom Betrag $\left|\Delta m_{v a k}^{2}\right| a b$, und ist für ν und $\bar{\nu}$ gleich. Im wechselwirkungsfreien Raum herrscht Symmetrie zwischen ν_{e} und ν_{μ}, die Bewegungsgleichung der Flavoreigenzustände wird durch eine symmetrische Matrix beschrieben.

$$
\begin{aligned}
i \frac{d}{d x}\binom{\nu_{e}}{\nu_{\mu}} & =\left(\begin{array}{rr}
A & B \\
B & -A
\end{array}\right) *\binom{\nu_{e}}{\nu_{\mu}} \\
A & =-\frac{\Delta m_{2}^{2}}{4 E_{\nu}} \cos 2 \vartheta_{v a k} \\
B & =\frac{\Delta m_{v a k}^{2}}{4 E_{\nu}} \sin 2 \vartheta_{v a k}
\end{aligned}
$$

2.2.2 Materie kommt ins Spiel

Die Symmetrie des Vakuums wird in Materie dadurch aufgehoben, daß sie Elektronen, aber keine Muonen/Tauonen enthält. Demzufolge ist das Durchqueren von Materie nur für $\nu_{e} \leftrightarrow \nu_{\mu}$ und $\nu_{e} \leftrightarrow \nu_{\tau}$ Oszillationen von Bedeutung, nicht aber für $\nu_{\mu} \leftrightarrow \nu_{\tau}$.

Beim Durchgang von Neutrinos durch Materie sind Absorptionsvorgänge durch Reaktionen mit der Materie, die den Fluß veringern würden vernachlässigbar, weil die Wirkungsquerschnitte proportional G^{2} sind ($\mathrm{G}=$ Fermikonstante). Die mittlere freie Weglänge der Neutrinos in Materie beträgt ca. $\left(\frac{1^{10^{12}}}{E_{\nu} / \mathrm{GeV}}\right) \mathrm{m} \quad[10]$.

Der Effekt der Neutrino-Oszillationen entsteht alleine durch den bezüglich der Neutrino-Flavor asymmetrischen Teil der kohärenten Vorwärtsstreuung der Neutrinos an den Elektronen der Materie. Dieser Effekt ist proportional zur Vorwärtsstreuamplitude, also proportional zu G.

Hierbei ist die kohärente Vorwärtsstreuung über den neutralen Strom, also durch Z^{0}-Austausch, für ν_{e} und ν_{μ} identisch. Sie führt nicht zu unterschiedlichen Phasenmodifikationen von ν_{e} und ν_{μ} also auch nicht zu NeutrinoOszillationen. Lediglich die kohärente Vorwärtsstreuung der Neutrinos an den Elektronen der Materie über den geladenen Strom, also W-Austausch, existiert nur für ν_{e}.

Aus dieser Asymmetrie ergibt sich ein zusätzlicher Eintrag V(x) in der Matrix der Bewegungsgleichung, den man als Potential der ν_{e} auffassen kann [11]. Der W-Austausch der ν_{μ} ist kein kohärenter Prozeß, da der Teilcheninhalt des einlaufenden Zustands und der des auslaufenden nicht identisch ist.

Die Bewegungsgleichung in Materie lautet damit:

$$
\begin{aligned}
i \frac{d}{d x}\binom{\nu_{e}}{\nu_{\mu}} & =\left(\begin{array}{cc}
A+V(x) & B \\
B & -A
\end{array}\right) *\binom{\nu_{e}}{\nu_{\mu}} \\
V(x) & = \begin{cases}+\sqrt{2} G N_{e}(x) & \text { für } \nu_{e} \\
-\sqrt{2} G N_{e}(x) & \text { für } \bar{\nu}_{e}\end{cases}
\end{aligned}
$$

Hierbei ist $N_{e}(x)$ die Elektronendichte in Abhängigkeit vom Ort x. Dieser zusätzliche Beitrag macht aus dem rein oszillatorischen Vakuumeffekt einen Resonanzeffekt. Zu den Masseneigenzuständen in Materie gehören andere Eigenwerte als im Vakuum. Es ändert sich dadurch sowohl Δm^{2}, als auch ϑ. Der Zusammenhang zwischen Vakuum- und Materieparameter lautet:

$$
\begin{aligned}
\Delta m_{m a t}^{2} \sin 2 \vartheta_{\text {mat }} & =\Delta m_{v a k}^{2} \sin 2 \vartheta_{v a k} \\
\Delta m_{\text {mat }}^{2} & =\Delta m_{v a k}^{2} \cdot \sqrt{\left(\cos 2 \vartheta_{v a k}-\frac{2 E_{\nu}}{\Delta m_{v a k}^{2}} V(x)\right)^{2}+\sin ^{2} 2 \vartheta_{v a k}}
\end{aligned}
$$

Die Oszillationswahrscheinlichkeit P ergibt sich im Spezialfall einer Materie mit konstanter Dichte ($\mathrm{V}(\mathrm{x})=\mathrm{V}$) analog zum Vakuum zu:

$$
\begin{aligned}
P_{\nu_{e} \rightarrow \nu_{\mu}}^{\text {mat }} & =\sin ^{2} 2 \vartheta_{\text {mat }} \sin ^{2} \frac{\Delta m_{\text {mak }}^{2} x}{4 E_{\nu} x} \\
& =\underbrace{\frac{\sin ^{2} 2 \vartheta_{\text {vak }}}{\left(\cos 2 \vartheta_{v a k}-\frac{2 E_{\nu}}{\Delta m_{\text {vak }}^{2}} V\right)^{2}}+\sin ^{2} 2 \vartheta_{v a k}^{2}}_{(*)} \frac{\left.\Delta m_{\text {mat }} x\right)}{4 E_{\nu}})
\end{aligned}
$$

Hier ist die Resonanzstruktur der Oszillationsamplitude in Materie erkennbar. Für von der Natur gegebene Parameter $\Delta m_{\text {vak }}^{2}$ und $\sin ^{2} 2 v_{\text {vak }}$ und durch die Elektronendichte der Materie festgelegtes Potential V existiert immer eine Neutrino-Energie E_{ν}, bei der der Ausdruck (\star) verschwindet und $P^{\text {mat }}=1$ wird. Dieser Effekt ist nach seinen Entdeckern Mikheyev, Smirnov und Wolfenstein (MSW-Effekt) [10, 12] benannt. Die wesentlichen Eigenschaften sind:

- Selbst bei kleinen Mischungswinkeln im Vakuum $\vartheta_{v a k}$, also kleinen $P^{v a k}$, ist die Oszillationsamplitude in Materie am Resonanzpunkt maximal ($P^{m a t}=1$).
- Die Resonanz ist Funktion von $\frac{\Delta m_{\text {vak }}^{2}}{4 E_{\nu}}$. Identische Materie kann also als Test für verschiedene $\Delta m_{\text {vak }}^{2}$ benutzt werden, falls man die Energie der Neutrinos wählen kann. Wegen des unterschiedlichen Vorzeichens des Potentialtermes ist der MSW-Effekt für ν und $\bar{\nu}$ verschieden.
Ist $\Delta m_{v a k}^{2}>0$, so findet die Oszillation hauptsächlich auf dem Neutrinosektor statt und ist für Antineutrinos unterdrückt, für $\Delta m_{v a k}^{2}<0$ ist dies umgekehrt.
- Materie-Oszillationen (wie auch Vakuum-Oszillationen) sind nur sensitiv auf $\Delta m_{v a k}^{2}$, nicht auf die Massen selber, bieten also nicht die Möglichkeit der Messung der Massen der Flavoreigenzustände. Unter Festlegung einer Masse z.B. mittels des "seasaw" Modells von Gell-Mann, Ramond und Slansky [13] können auch Aussagen über die absoluten Massen der Neutrinos gemacht werden [11].

Bei Materie variabler Dichte, z.B. in der Erde oder der Sonne, ist die Bewegungsgleichung der Flavoreigenzustände im allgemeinen nicht mehr analytisch lösbar, nur noch für spezielle Grenzfälle [14], oder durch stückweise Parametrisierung der Dichte [15]. Eine detaillierte Diskussion der möglichen Lösungen der Bewegungsgleichung, sowie eine geometrische Deutung der MaterieOszillationen finden sich in [16].

Zur Berechnung der Oszillationsamplitude beim Durchgang von Neutrinos durch die Erde kommt im Rahmen dieser Arbeit ein numerisches Verfahren zur Anwendung, das in (Kap. 8.1) diskutiert wird.

3 Die Maschine und ihr Weg zur Erlangung der Daten

Der Fréjus-Detektor, der vornehmlich als Nukleonzerfallsdetektor konzipiert wurde, ist zur Verminderung der Rate der durch Teilchen der kosmischen Strahlung induzierten Reaktionen als Untertagedetektor konzipiert worden. Er befindet sich in einem Seitenstollen des Fréjus-Straßentunnels, an der Grenze zwischen Frankreich und Italien, im Savoyen, unter einer, im Mittel ca. 1780 m starken, Felsüberdeckung (Abb. 4), wodurch die Gesamtereignisrate auf etwa 45 pro Stunde begrenzt wird. Der Detektor ist in verschiedenen Arbeiten in seiner Bau- und Betriebsweise detailliert beschrieben worden [17, 18, 19, 20], hier finden nur die für die vorzustellende Analyse wichtigen Fakten Erwähnung.

Abbildung 4: Das Laboratorium im Fréjus-Straßentunnel

3.1 Das Detektordesign

Der ca. 900 t schwere, $\left(6 \times 6 \times 12 \times \mathrm{m}^{3}\right)$ große Detektor besteht aus drei Hauptkomponenten, die jeweils zu ($6 \times 6 \times \mathrm{m}^{2}$) großen Ebenen zusammengesetzt und
vertikal aufgehängt sind.

- 3 mm starke Eisenplatten, die zwischen je zwei Flashkammerebenen angeordnet sind. Sie dienen als Zerfallsmaterial und als Materie zur Absorption sekundär erzeugter Teilchen.
- ($1.5 \times 1.5 \times 600 \times \mathrm{cm}^{3}$) große Geigerrohre (extrudierte, Ar Gas gefüllte Aluminium Profile) zur Triggerung des Detektor
- $\left(0.54 \times 0.49 \times 600 \times \mathrm{cm}^{3}\right)$ große Flashkammern (aluminiumbeschichtete, mit Neogal betriebene Polypropylen Profile) zur Rekonstruktion der Impulse der erzeugten Teilchen

Die sensitiven Ebenen sind abwechselnd vertikal und horizontal ausgerichtet, damit, mittels zweier Projektionen, eine räumliche Rekonstruktion der Ereignisse möglich ist. Die (Abb.5) veranschaulicht die Modulbauweise. Auf vier Paare aus Flashkammerebenen, alternierend montiert, folgt eine Geigerrohrebene. Das folgende Modul ist um 90 Grad gedreht, damit auch die Geigerrohre abwechselnd horizontal und vertikal orientiert sind.

Abbildung 5: Der Aufbau des Fréjus-Detektors

Ein kleinerer Prototyp ($0.8 \times 0.8 \times 1.6 \times \mathrm{m}^{3}$) des Fréjus-Detektors, der Testdetektor, wurde zur Messung der grundlegenden Eigenschaften des FréjusDetektors am Bonner Synchrotron und am Deutschen Elektronensynchrotron in Hamburg betrieben.

Das Zusammenspiel der Komponenten soll an Hand des Ablaufes der Registrierung eines Ereignisses erläutert werden.

3.2 Ein Ereignis entsteht

Die Geigerrohre sind permanent sensitiv für ionisierende Teilchen und liefern die Information eines Teilchendurchganges. Die Bedingung für die Aufnahme eines Ereignisses, sogenannte Triggerbedingung, ist das Ansprechen von mindestens 5 Geigerrohren in 5 aufeinanderfolgenden Ebenen innerhalb einer Zeit von 320 ns , wobei eine Ebene maximal mit 3 Geigerrohren beitragen darf. Diese Anforderung, zusammen mit der Zündwahrscheinlichkeit der Geigerrohre (ca.78\%), liefert eine hohe Ansprechwahrscheinlichkeit für Neutrino Reaktionen des geladenen Stromes (ca. 85% bei $E_{\nu}=1 \mathrm{GeV}$). Die Rate zufälliger Koinzidenzen bleibt mit ca. 25 pro Stunde jedoch niedrig. Bei einer Totzeit von ca. 4 s , bedingt durch die Auslese und den Aufbau der Hochspannung, beträgt die Sensitivität ca. 95% der Laufzeit.

Ist die Triggerbedingung erfüllt, wird ein steiler Hochspannungspuls an die Flashkammerebenen angelegt, der die Gasentladung in den getroffenen Zellen zündet. Die Zündwahrscheinlichkeit liegt bei dieser Komponente bei ca. 72%. Das Muster gezündeter Zellen in beiden Ansichten wird digital ausgelesen und bildet die Basis für die Analyse. Da die Granularität, nur 3 mm Eisen zwischen zwei sensitiven Ebenen, sehr fein ist und die Ortsauflösung mit den Flashkammern wegen des kleinen Querschnittes groß, ergibt sich die Möglichkeit, elektromagnetische Schauer von Spuren, also (e, γ) von ($\pi^{ \pm}, \mu^{ \pm}, \mathrm{p}$) mit hoher Wahrscheinlichkeit zu unterscheiden und den Weg der Teilchen durch den Detektor zu verfolgen.

Die Tabellen (Tab. 2) und (Tab. 3) zeigen die wichtigsten Eigenschaften des Detektors und der Flash- und Geigerkomponenten im Überblick.

Die Anzahl gezündeter Flashkammerzellen in einem Ereignis durch Nebeneffekte wie natürliche Radioaktivität in Fels und Detektormaterie und elektrische Störungen ist vernachlässigbar (ca. 1 Zelle pro m^{3}, bei den Geigerrohren gar nur 0.05 Zellen pro m^{3}), denn das Ereignisvolumen ist typisch $1 m^{3}$ bei einer im Detektor deponierten Energie von 1 GeV . Das Übersprechen der Flashkammern (Zünden einer selber nicht getroffenen Zelle durch eine getroffene

geographische Lage	FréjusStraßentunnel $45^{\circ} 8^{\prime} 35^{\prime}$ Nord, $6^{\circ} 42^{\prime}$ Ost
mittl. Felsbedeckung	1780 m
Laufzeit	80% der Kalenderzeit von Feb:84-Sept.89
Größe	$6 \times 6 \times 12,3 \mathrm{~m}^{3}$
Gesamtmasse	$900 t$
mittlere Dichte	$1.95 \mathrm{~g} / \mathrm{cm}^{3}$
Material	Eisen
Trigger	mindestens 5 Geigertreffer in 5 aufeinanderfolgenden Ebenen bei maximal 3 Treffern je Ebene
	$40-50$ Ereignisse $/ \mathrm{h}$
Triggerrate	$4 s, 5 \%$ der Laufzeit
Totzeit	Reichweite für μ, π, p Zahl der Treffer für γ, e
Impulsmessung	e, γ gegen μ, π, p besser als 90% für $E_{e, \gamma} \geq 200 \mathrm{MeV}$
Teilchenunterscheidung	

Tabelle 2: Die wesentlichen Eigenschaften des Fréjus-Detektors

	Geigerkammern	Flashkammern
Material	Aluminium	Polypropylen
Anzahl der Kammern	39776	933888
Anzahl je Ebene	352	1024
Anzahl der Ebenen	113	912
Länge der Rohre	6 m	6 m
Querschnitt	innen $15 \times 15 \mathrm{~mm}^{2}$ außen $16,7 \times 17,5 \mathrm{~mm}^{2}$	innen $5,4 \times 4,9 \mathrm{~mm}^{2}$ außen $5,7 \times 5,5 \mathrm{~mm}^{2}$
Zündwahrscheinlichkeit	78%	72%
Rauschtreffer pro Ereignis	$6 \cdot 10^{-4}$ der Kammern	$5 \cdot 10^{-4}$ der Kammern

Tabelle 3: Die Geiger- und Flashkammern

Nachbarzelle) führt mit seiner Wahrscheinlichkeit von ca. 8% zu etwa 10 gezündeten Zellen bei einem Ereignis der sichtbaren Energie von 1 GeV .

3.3 Die gemessenen Ereignissorten

In der Zeit von Februar 1984 bis September 1989 wurden mehr als 1.000 .000 Ereignisse, entsprechend einer Luminosität von 1.56 kty ($1 \mathrm{kty} \hat{=}$ eine Tonne Materie, ein Jahr sensitiv der Strahlung ausgesetzt) registriert und von einem/r Physiker/in zur Datenreduktion in einer Vorauswahl an einem Grafikbildschirm in die untenstehenden Ereignistypen eingeordnet.
a) Die Störenfriede:

- Zufällige Koinzidenzen

Natürliche Radioaktivität und elektrisches Rauschen führen zu ca. 25 Ereignissen pro Stunde. Hierbei sind die gezündeten Zellen statistisch über den gesamten Detektor verteilt. Eine Verwechslung mit anderen Ereignistypen ist somit ausgeschlossen.

- Muonen

Die durch die kosmische Strahlung in der Atmosphäre erzeugten Muonen müssen, abhängig von der Felsüberdeckung in ihrer Einfallsrichtung, eine bestimmte Mindestenergie haben, um bis zum Detektor vorzudringen (ca. 1.4 TeV bei 1780 m Fels). Dies führt zu einer Rate von ca. 20 Ereignissen pro Stunde.
Durchgehende Muonen (Abb. 6), mit und ohne Bremsstrahlungsschauer bzw. Hadronschauer, und Mehrfachmuonen (Abb. 7) sind leicht als solche zu erkennen. Sie dienen zur Überwachung der Funktionsfähigkeit der Detektorkomponenten (durchgehende Muonen) und liefern Erkenntnisse über die Physik atmosphärischer Schauer (Mehrfachmuonen) [21]. Die Muonen können zur Suche nach Punktquellen im All benutzt werden [20].
Lediglich die Muonen, deren Energie nicht ausreicht, um den Detektor wieder zu verlassen, die also in ihm stoppen und in Elektronen und Positronen zerfallen, bzw. bei negativgeladenen Muonen häufig muonische Atome erzeugen, bilden die Untergrundereignisse zu den durch Neutrinos erzeugten. Auf Grund der hohen Rate stoppender Muonen (ca. 5 Ereignisse pro Tag) muß dieser Untergrund sorgfältig eliminiert werden. Das Verfahren dazu erläutert (Kap. 6.3.2).

Abbildung 6: Ein durchgehendes Muon mit Bremsstrahlungsschauer Das Bild zeigt die beiden orthogonalen Ansichten, Aufsicht (Top) und Seitenansicht (Side), des Detektors. Die gesetzten Flashkammern sind als ausgemalte, die Geigerzellen als offene Quadrate dargestellt. Das Muon hat, im Koordinatensystem dieses Bildes gesprochen, den Detektor von rechts-vorne-oben nach links-hinten-unten durchflogen. Auf der Muonspur erkennt man deutlich einen großen und einen kleinen Bremstrahlungsschauer.

Abbildung 7: Ein Mehrfachmuonen Ereignis
Man erkennt fünf Muonen die den Detektor parallel durchqueren. Die Zuordnung der Spuren in den beiden Ansichten ist mit Hilfe der Längskoordinate (Z-Achse des Detektors) möglich. Ein Muon zeigt Bremsstrahlung.

- Neutrale Teilchen

Neutrale Hadronen (K_{L}^{0}, n), die durch Reaktionen von Muonen im Fels entstehen können, sind für die Flash- und Geigerrohre unsichtbar, können von außen unerkannt in den Detektor eindringen und in ihm durch Wechselwirkungen mit Materie geladene Teilchen erzeugen. Diese triggern unter Umständen den Detektor. Solche Ereignisse sind sehr selten und werden durch die Forderung stark reduziert, daß der Wechselwirkungspunkt (Vertex) eines Ereignisses in jeder Raumkoordinate mindestens 50 cm vom Detektorrand entfernt liegen muß (Kap. 6.3.2).
b) Die contained Ereignisse:

So bezeichnet man Ereignisse, bei denen der Vertex in jeder Koordinate mindestens 50 cm vom Detektorrand entfernt liegt und alle Strukturen vollständig im Detektor enthalten sind ("contained" Ereignisse), bzw. mindestens ein Teilchen den Detektor verläßt ("vertex contained" Ereignisse). Die Kriterien zur Entscheidung, ob ein Teilchen den Detektor verläßt oder nicht, werden in (Kap. 6.3.1) erläutert. Für diesen Ereignistyp kommen zwei Reaktionsmöglichkeiten in Frage:

- Nukleonzerfälle

Die Anzahl der Ereignisse, die nur mit der Nukleonzerfallshypothese verträglich sind, ist leider so gering, daß sie im Rahmen dieser Analyse zu vernachlässigen ist.

- Neutrino Reaktionen mit der Detektormaterie Über die gesamte Laufzeit wurden, nach Anwendung aller Schnitte zur Datenreduktion (Kap. 6.3), 175 Ereignisse (Kap. 7) detektiert. Da sie die experimentelle Basis dieser Arbeit sind, soll ihnen in einem separaten Abschnitt (Kap. 3.3.1) Raum gegeben werden, um die grundlegende Problematik der Analyse herauszustellen.

3.3.1 Die Neutrino Reaktionen

Die Neutrinos reagieren mit den Nukleonen \mathcal{N} der Detektormaterie über den geladenen oder den neutralen Strom, woraus sich drei unterscheidbare Klassen ergeben. Mit X sei das Hadronensystem im Endzustand bezeichnet. Die drei Reaktionsklassen sind:

- ν_{e}-Reaktionen des geladenen Stromes ($\nu_{e}^{\text {gel }}$)

$$
\nu_{e}\left(\bar{\nu}_{e}\right)+\mathcal{N} \rightarrow e^{\mp}+X
$$

Die (Abb. 8) zeigt einen typischen Vertreter dieser Klasse. Sie zeichnet sich durch das Auftreten eines durch das Elektron/Positron erzeugten, elektromagnetischen Schauers aus, der von einem hadronischen Teil begleitet sein kann. Dieses Beispiel zeigt ein zusätzliches Proton.

- ν_{μ}-Reaktionen des geladenen Stromes ($\nu_{\mu}^{g e l}$)

$$
\nu_{\mu}\left(\bar{\nu}_{\mu}\right)+\mathcal{N} \rightarrow \mu^{\mp}+\mathrm{X}
$$

In (Abb. 9) ist die lange nicht wechselwirkende Spur des Muons erkennbar, sowie eine kurze Pionspur. Das Proton, das in die 2-Richtung geflogen ist hat aufgrund seiner niedrigen Energie keine Zelle gezündet.

- ν-Reaktionen des neutralen Stromes ($\nu^{\text {neu }}$)

$$
\nu(\bar{\nu})+\mathcal{N} \rightarrow \nu(\bar{\nu})+\mathrm{X}
$$

Sie werden sowohl durch ν_{e} als auch durch ν_{μ} erzeugt, können ihnen aber nicht zugeordnet werden, da das Neutrino sich nicht durch das Erzeugen des zugehörigen Leptons zu erkennen gibt, man beobachtet also nur den hadronischen Teil des Ereignisses (Abb. 10). In diesem Beispiel erkennt man eine kurze Protonspur und ein π^{0}, das in zwei Photonen zerfallen ist. Die Schauer liegen in der Seitenansicht hintereinander. Das Neutrino ist unerkannt in die 1-Richtung verschwunden.

Abbildung 8: Eine ν_{e} Reaktion des geladenen Stromes Die Abbildung zeigt ein Ereignis in Seitenansicht (Side) und Aufsicht (Top) des Detektors in Ausschnittsvergrößerung, mit beigefügten Maßstab und Koordinaten des Ausschnittes an den Ecken der Rahmen. Die Identität und Energie der Teilchen ist an der rechten Seite ablesbar. Die Vektoren geben die generierten Anfangsimpulse wieder.

Abbildung 9: Eine ν_{μ} Reaktion des geladenen Stromes

Abbildung 10: Eine ν Reaktion des neutralen Stromes
Für das auslaufende Neutrino steht rechts statt der Masse die Bezeichnung (neu)

Die Indices (gel) bzw.(neu) stehen für Reaktionen des geladenen bzw. des neutralen Stromes, im folgenden werden die drei Reaktionsklassen zur Abkürzung als $\nu_{e}^{g e l}, \nu_{\mu}^{g e l}$ und $\nu^{n e u}$ bezeichnet.

Diese Signaturen sind nicht immer eindeutig, was impliziert, daß detaillierte Erkenntnisse, sowohl über die Häufigkeit der verschiedenen Neutrino Reaktionen und ihre Kinematik, als auch über das Verhalten der erzeugten Leptonen und Hadronen im Detektor, gewonnen werden müssen, um die Neutrino Reaktionen mit hoher Wahrscheinlichkeit richtig zu klassifizieren und ihre Energie möglichst exakt rekonstruieren zu können. Zu diesem Zweck wurden Computer-Simulationsrechnungen (Kap. 4) durchgeführt, an deren Ende simulierte Ereignisse stehen, die mit den Daten verglichen werden können (Kap. 7).

4 Vom Neutrino durch den Computer zum Ereignis

Die Computersimulation ist gemäß deı in (Kap. 3.3.1) formulierten Anforderungen z weigeteilt. Im ersten Schritt, bei der Simulation der Neutrino Reaktionen (Kap. 4.1), sollen die Erkenntnisse der Neutrinophysik mit dem Ziel umgesetzt werden, die Vierervektoren (E, \vec{p}) der in den Neutrino Reaktionen erzeugten Teilchen nach Verlassen des Reaktionskernes zu berechnen. Diese sind Ausgangspunkt der Detektorsimulation (Kap. 4.2), also der Verfolgung der Teilchen auf ihrem Weg durch den Detektor. Deren Ergebnisse sind Muster gesetzter Zellen im Fréjus-Detektor, analog denen der realen Ereignisse, mit dem zusätzlichen Vorteil der Information, welches Teilchen welche Zelle gezündet hat.

Die Bewahrung der vollen Information der stattgefundenen Wechselwirkung in Form der Vierervektoren des einfallenden Neutrinos, des getroffenen Nukleons und aller erzeugten Teilchen, erlaubt eine Kontrolle der Güte der nachfolgenden Rekonstruktion (Kap. 6.5).

4.1 Das Neutrino-Simulationsprogramm

Das hier zu beschreibende Programm zur Simulation der Neutrinowechselwirkungen entwickelten Claude Longuemare und Bernd Kuznik [22, 23]. Im Rahmen dieser Arbeit wurde der Fluß und die Winkelverteilung der atmosphärischen Neutrinos nach Daten von Gaisser [24] für den Ort des Fréjus-Detektors parametrisiert und in das Programm eingebaut.

Die Simulation muß Neutrino Reaktionen im sensitiven Energiebereich des Fréjus-Detektors ($0.1-20$) GeV generieren, die bezüglich ihrer Häufigkeit, Kinematik, Teilchenmultiplizitäten, Energie- und Winkelverteilung mit den realen Ereignissen verglichen werden sollen. Insbesondere muß gewährleistet sein, daß die in anderen Experimenten gemessenen Größen, Wirkungsquerschnitte (WQS) und Verteilungen des mittleren quadratischen Viererimpulsübertrages $\left\langle Q^{2}\right\rangle$ reproduziert werden können. Der zu untersuchende Effekt der NeutrinoOszillationen ist sensitiv auf das Verhältnis der geladenen Stromreaktionen der ν_{e} und ν_{μ} als Funktion der Energie und des Zenitwinkels (Kap. 8). Deswegen liegt ein besonderes Augenmerk auf den totalen Wirkungsquerschnitten $\sigma_{\text {tot }}$ der Reaktionen der verschiedenen Neutrinozustände und der korrekten Berücksichtigung des Neutrinoflusses aller Neutrinozustände am Detektorort. Da die Neutrino Reaktionen an im Eisen gebundenen Nukleonen erfolgen, ist
eine Berechnung der Wechselwirkungen der entstehenden Hadronen vor Verlassen des Kernes notwendig. Durch diese Wechselwirkungen, insbesondere wenn entstehende Teilchen schon im Kern absorbiert werden, ist eine physikalische Grenze der Genauigkeit der Rekonstruktion der Neutrino-Energie und der Einfallsrichtung gegeben (Kap. 4.1.3).

4.1.1 Der Generator

Für jeden der vier Neutrinozustände ($\nu_{e}, \bar{\nu}_{e}, \nu_{\mu}, \bar{\nu}_{\mu}$) sind Reaktionen des geladenen und des neutralen Stromes an Protonen p und Neutronen n gemäß der Zusammensetzung des Eisens ($\frac{p}{n}=\frac{26}{20}$) zu erzeugen. Neben dem dominanten "Kanal" der quasielastischen Reaktion treten Einpionproduktion und tiefinelastische Reaktionen auf. Die berücksichtigten Kanäle des ν_{μ} sind in (Tab. 4) exemplarisch aufgelistet (X steht für das Hadronsystem im Endzustand).

Reaktionen des geladenen Stromes
$\nu_{\mu}+\mathrm{n} \rightarrow \mu^{-}+\mathrm{p}$
$\nu_{\mu}+\mathrm{p} \rightarrow \mu^{-}+\mathrm{p}+\pi^{+}$
$\nu_{\mu}+\mathrm{n} \rightarrow \mu^{-}+\mathrm{n}+\pi^{+}$
$\nu_{\mu}+\mathrm{n} \rightarrow \mu^{-}+\mathrm{p}+\pi^{0}$
$\nu_{\mu}+\mathrm{n} \rightarrow \mu^{-}+X^{+}$
$\nu_{\mu}+\mathrm{p} \rightarrow \mu^{-}+X^{++}$

Reaktionen des neutralen Stromes
$\nu_{\mu}+\mathrm{n} \rightarrow \nu_{\mu}+\mathrm{n}$
$\nu_{\mu}+\mathrm{p} \rightarrow \nu_{\mu}+\mathrm{p}$
$\nu_{\mu}+\mathrm{n} \rightarrow \nu_{\mu}+\mathrm{n}+\pi^{0}$
$\nu_{\mu}+\mathrm{p} \rightarrow \nu_{\mu}+\mathrm{p}+\pi^{0}$
$\nu_{\mu}+\mathrm{n} \rightarrow \nu_{\mu}+\mathrm{p}+\pi^{-}$
$\nu_{\mu}+\mathrm{p} \rightarrow \nu_{\mu}+\mathrm{n}+\pi^{+}$
$\nu_{\mu}+\mathrm{n} \rightarrow \nu_{\mu}+X^{0}$
$\nu_{\mu}+\mathrm{p} \rightarrow \nu_{\mu}+X^{+}$

Tabelle 4: Die Reaktionskanäle des ν_{μ}

Bei der Einpionproduktion wird angenommen, daß der Kanal zum Isospin $3 / 2$ durch die Anregung der Δ-Resonanz ($\left.M_{\Delta}=1.232 \mathrm{GeV}, \Gamma_{\Delta}=0.120 \mathrm{GeV}\right)$ dominiert ist, während der Isospin $1 / 2 \mathrm{Kanal}$ nichtresonant ist. Das statische Modell von Bell und Berman [25] liegt dabei zu Grunde. Tiefinelastische Neutrino Reaktionen tragen oberhalb der $\Delta+\pi$ Schwelle ($\mathrm{W} \geq 1.35 \mathrm{GeV}$)zum Ereignissample bei. Den Quarkverteilungen im Nukleon steht das valence-sea-quark-model von Barger und Phillips [26] Pate. Die weitaus häufigste Reaktion, die quasielastische über den geladenen Strom, ist z.B. im GargamelleExperiment [27] mit ν_{μ} und $\bar{\nu}_{\mu}$ an $C F_{3} \mathrm{Br}$ gemessen worden. Der totale Wirkungsquerschnitt $\sigma_{\text {tot }}$ wurde in Übereinstimmung mit dem valence-sea-quarkmodel als lineare Funktion der Neutrino-Energie gemessen. Berechnungen des Proportionalitätsfaktors im valence-sea-quark-model mit dem p/n Verhältnis des Eisens ergeben:

$$
\frac{\sigma_{e a}}{N u k l e o n}=0.716(0.268) \cdot \frac{E_{\nu}}{G e V} \cdot 10^{-38} \mathrm{~cm}^{2} \quad \text { für } \quad \nu(\bar{\nu})
$$

in guter Übereinstimmung mit den Ergebnissen des Simulationsprogrammes (Abb. 11).

Abbildung 11: Der totale Wirkungsquerschnitt der ν_{μ} Reaktionen des geladenen Stromes
Die Datenpunkte sind die Simulationsergebnisse, die Gerade die Vorhersage aus dem valence-sea-quark-model

Dies gilt auch für die $\left\langle Q^{2}\right\rangle$ Verteilung (Abb. 12), die als kinematischer Test betrachtet werden kann. Die Vorhersage aus dem valence-sea-quark-model mit dem p/n Verhältnis des Eisens lautet:

$$
\left\langle Q^{2}\right\rangle=0.261(0.123) \cdot \frac{E_{\nu}}{G e V} \cdot G e V^{2} \quad \text { für } \quad \nu(\bar{\nu})
$$

Abbildung 12: Der mittlere Viererimpulsübertrag $\left\langle Q^{2}\right\rangle$ der ν_{μ} Reaktionen des geladenen Stromes
Die Datenpunkte sind die Simulationsergebnisse, die Gerade die Vorhersage aus dem valence-sea-quark-model

4.1.2 Die Flußparametrisierung

Die Anzahl der Neutrinos aller vier Zustände ($\nu_{e}, \bar{\nu}_{e}, \nu_{\mu}, \bar{\nu}_{\mu}$) für solares Maximum und solares Minimum ist in Energie- und Winkelintervallen (Neutrinos $/ \mathrm{s} s \mathrm{~m}^{2}$) gegeben. Diese Information wurde als Datensatz von Gaisser und Stanev zur Verfügung gestellt [24]. An die Energieabhängigkeit läßt sich, gemittelt über die Sonnenaktivität, ein Potenzspektrum mit drei Parametern (Tab. 5) anpassen.

$$
\frac{d \Phi}{d E_{\nu}}=A\left(\frac{E_{\nu}}{G e V}+E_{0}\right)^{-\alpha}
$$

Flavor	A $\cdot \mathrm{s}$ sr $\mathrm{m}^{2} \mathrm{GeV}$	E_{0}	α
ν_{e}	196.64	0.23847	3.0538
$\bar{\nu}_{e}$	160.30	0.22907	3.1039
ν_{μ}	345.82	0.21539	3.0032
$\bar{\nu}_{\mu}$	336.84	0.21002	2.9916

Tabelle 5: Die Parameter der Neutrino Energiespektren

Der Verlauf ist für alle Neutrinozustände in etwa gleich (Abb. 13 a), lediglich die Normierung, also die Gesamtanzahl der Neutrinos, ist stark unterschiedlich.

Abbildung 13: Die Spektren der atmosphärischen Neutrinos
a) Die Energieabhängigkeit aller Neutrinosorten
b) Die Winkelabhängigkeit für ν_{μ} und ν_{e} im Intervall $\left(0.8 \leq E_{\nu} \leq 1.0\right) \mathrm{GeV}$

Der Fehler der Flußanpassung sei definiert als die relative Abweichung des Integrals über die Energieverteilung in den Grenzen ($0.2 \leq E_{\nu} \leq 3.0$) GeV von der Flußvorhersage durch Gaisser und Stanev. Er ist klein ($\leq 1 \%$) gegen die Unsicherheit der Flußvorhersage (20\%) (Kap. 2.1). Die Winkelverteilung des Neutrinoflusses ist energieabhängig und für alle Zustände verschieden. Sie wird nach den vorgegebenen Daten getrennt gewürfelt. Einen Einblick in die Größe der Schwankung liefert (Abb. 13 b).

4.1.3 Die Kerneffekte

Da die Nukleonen nicht frei sind, sondern im Eisen gebunden, kommen zwei Effekte zum Tragen:

- Das Pauliprinzip bzw. die Fermibewegung der Nukleonen im Kern.
- Die Wechselwirkungen der erzeugten Teilchen vor Verlassen des Kernes.

Dem wird durch folgende Behandlung Rechnung getragen:

- Durch das Pauliprinzip ist die Ereignisrate im Verhältnis zu Reaktionen an freien Nukleonen unterdrückt, da die Nukleonen im Endzustand bei niedrigen Impulsüberträgen sonst verbotene Zustände besetzten. Dieses sogenannte Pauli-Blocking wird berücksichtigt und führt bei einzelnen Reaktionskanälen zu einer starken Reduktion der Ereigniszahlen (z.B. $\nu_{\mu}+\mathrm{n} \rightarrow \mu^{-}+\mathrm{p}$ um ca. 20%).
- In den Neutrino Reaktionen entstehen Pionen aller Ladungszustände, die sofort mit den Nukleonen des Mutterkerns reagieren können. Das verwendete Modell betrachtet die Wechselwirkungen als ($\pi \mathcal{N}$) Resonanzen [28] auf der Basis experimentell bestimmter Wirkungsquerschnitte [29, 30, 31]. Effekte wie Ladungsaustausch Reaktionen, Pauli-Blocking, Isospin und die Wechselwirkungen der Nukleonen in Endzustand zieht die Simulation in Betracht. Neutrale Pionen zerfallen beim Verlassen des Kernes in zwei Photonen.

Die Auswirkungen der Wechselwirkungen im Mutterkern auf die Energie- und Winkelverteilung (Abb. 14) der Ereignisse soll aufgezeigt werden.

Geht keine Energie (kein Impuls) an den Mutterkern verloren, so ergibt die Summe aller Vierervektoren (Σp_{i}) derjenigen Teilchen, die den Mutterkern
verlassen, den Vierervektor p_{ν} des Neutrinos. Dieser Idealfall ist im Eisen nicht erfüllt, vielmehr führen die Wechselwirkungen im Mutterkern zu einer Verschmierung der Energie und des Zenitwinkels des Neutrinos, die sich aus dem Vergleich von p_{ν} und Σp_{i} ergibt. Die Verschmierung der Neutrino-Energie (Abb. 14 a) ist asymmetrisch, aber klein im Verhältnis zur Ungenauigkeit der Energierekonstruktion (Kap. 5.1.6). Die Unsicherheit in der Bestimmung des Neutrino-Zenitwinkels (Abb. 14 b) durch die Wechselwirkungen im Mutterkern beträgt im Mittel ca. $10^{\circ}\left(\sigma\left(\Delta \theta_{y}\right)=9.44^{\circ},\left\langle\Delta \theta_{y}\right\rangle=0.19^{\circ}\right)$.

Allein durch die Absorption und Streuung im Mutterkern sind der erreichbaren Genauigkeit der Rekonstruktion schon Grenzen gesetzt.

Abbildung 14: Der Einfluß der Wechselwirkungen im Mutterkern
a) Energieverschmierung
b) Winkelverschmierung

4.2 Die Detektorsimulation

Auf dieser Stufe der Simulation stehen die Vierervektoren der in den Neutrino Reaktionen erzeugten Teilchen ($p . \pi . \pi^{ \pm} . e^{ \pm}, \mu^{ \pm}, \gamma, \nu$) zur Verfügung. Die anschließende Simulation ihres Verhaltens im Detektor erfolgt mittels des

GHEISHA/EGS Programmes von Harm Fesefeldt [32], in das die Detektorstruktur implementiert wurde [17]. Berücksichtigung finden die Geometrie des Detektors, die Materialien, die Zündeigenschaften der sensitiven Elemente und die Übersprechwahrscheinlichkeit der Flashkammern.

Die Teilchenverfolgung zieht alle Reaktionsmöglichkeiten in Betracht, insbesondere :

- Vielfachstreuung und kontinuierlichen Energieverlust
- hadronische Wechselwirkungen einschließlich des Verhaltens der angeregten Kerne

Die Anwendung des EGS Programmes auf Detektoren in Gaszähler/Absorber Sandwich-Bauweise (wie den Fréjus-Detektor) ist problematisch, da es Photonen und Elektronen in elektromagnetischen Schauern nur bis zu Energien von mehreren hundert keV verfolgt und die restliche Energie beim Unterschreiten der Abschneideenergie (zur Rechenzeitersparnis in diesem komplexen System vieler Teilchen) am jeweiligen Ort deponiert. Dies ist zur Anwendung auf den Fréjus-Detektor unbefriedigend, da:

- Elektronen von 300 keV in Polypropylen eine Reichweite von 1 mm haben und parallel zu den Eisenebenen bis zu drei weitere Flashkammern zünden können.
- Niederenergetische Photonen bei ihrer Konversion, wegen der sehr niedrigen Zündschwelle von einigen keV, sowohl Flashkammern, als auch Geigerkammern zünden können.
Auch im Vergleich der Schauerprofile mit Schauerprofilen der Testdetektordaten zeigt sich eine viel zu schmale transversale Ausdehnung der EGS Schauer. Durch die zu schmale Gestalt der Schauer vermindert sich bei niedrigen Schauerenergien die Erkennungswahrscheinlichkeit, außerdem sinkt die Triggerwahrscheinlichkeit. Abhilfe schafft eine Nachverfolgungsprozedur [17] der niederenergetischen Elektronen und Photonen unterhalb der Abschneideenergien auf Basis des Bethe-Bloch-Energieverlustes und der Konversionswahrscheinlichkeit der Photonen. Diese Modifikation liefert unabhängig von der Schauerenergie (50-1000) MeV etwa 40% der Flash- und 30% der Geigertreffer [17].
Ist die Verfolgung aller Teilchen abgeschlossen, steht das Muster aller gesetzten Zellen zur Verfügung, und der Anteil der generierten Ereignisse, der die Triggerbedingung erfüll hat, ist bestimmbar. Der Verlauf der Triggerwahrscheinlichkeiten aller Ereignisse, deren Vertex in jeder Koordinate mehr als 50
cm vom Detektorrand entfernt liegt, ist für Reaktionen des geladenen Stromes in der (Abb. 15 a) als Funktion der Neutrino-Energie aufgetragen. Im Nieder-

Abbildung 15: Die Triggerwahrscheinlichkeit der Reaktionen des Geladenen Stromes
a) als Funktion der Neutrino-Energie
b) als Funktion des Zenitwinkels
energiebereich, in dem die Erzeugung der Muonmasse noch von Bedeutung ist, liegt die Nachweiswahrscheinlichkeit der $\nu_{e}^{g e l}$ über derjenigen der $\nu_{\mu}^{g e l}$, ab 500 MeV verlaufen die Kurven in etwa gleich und die Nachweiswahrscheinlichkeit erreicht 90% bei 1.5 GeV . Die Abhängigkeit vom Zenitwinkel, also dem Winkel zu den Eisenplatten des Detektors, ist schwach. Die Differenz zwischen Maximum und Minimum beträgt 18% (10.5%) für $\nu_{\dot{e}}^{g e l}$ ($\nu_{\mu}^{g e l}$) (Abb. 15 b).

Da der Trigger meistens schon durch das geladene Lepton erfüllt wird, ist die Triggerwahrscheinlichkeit der Ereignisse des neutralen Stromes wesentlich schlechter. Das Neutrino im Endzustand entführt, da es dem Detektor verborgen bleibt, einen großen Teil der Energie, die damit nicht mehr zum Triggern des Detektors zur Verfügung steht. Je inelastischer die Reaktion, je mehr Energie also in das Hadronensystem gesteckt wird, um so größer ist die Triggerwahrscheinlichkeit (Abb. 16).

Abbildung 16: Die Triggerwahrscheinlichkeit der Reaktionen des Neutralen Stromes als Funktion der Neutrino-Energie

Die mittleren Triggerwahrscheinlichkeiten, definiert als die Anzahl Ereignisse die die Triggerbedingung erfüllt haben dividiert durch alle Ereignisse der Klasse, sind in (Tab. 6) aufgelistet.

Reaktion	Triggerwahrscheinlichkeit
$\nu_{e}^{\text {gel }}$	70.4%
$\nu_{\mu}^{\text {gel }}$	64.5%
$\nu^{\text {neu }}$	22.7%

Tabelle 6: Die mittleren Triggerwahrscheinlichkeiten

5 Vom Leben des Einzelnen...

In den Neutrino Reaktionen werden eine Vielzahl unterschiedlicher Teilchen erzeugt. Die Aufgabe der Analyse ist es, unter einer bestimmten Reaktionshyphothese ($\nu_{\mu}^{\text {gel }}, \nu_{e}^{\text {gel }}, \nu^{\text {neu }}$), aus der dann für die einzelnen Strukturen Teilchenhypothesen folgen, eine Aussage zu treffen bezüglich der Art der Wechselwirkung und der Energie und Richtung des einfallenden Neutrinos.

Zu diesem Zweck ist es sinnvoll, sich zuerst Informationen über die Eigenschaften und Erkennungswahrscheinlichkeiten der potentiell erzeugten Teilchen zu beschaffen und danach aus der Kinematik der Reaktionen Entscheidungskriterien für die Einordnung in die in (Kap. 3.3.1) vorgestellten Klassen bereitzustellen, mit dem Ziel, die Rekonstruktion der Ereignisse der generierten "Wahrheit" möglichst nahe zu bringen. Es fließen Erfahrungen aus den Messungen am Testdetektor $[33,34]$ und Kenntnisse über die Eigenschaften der verschiedenen Neutrino Reaktionen ein.

Nachdem die Brauchbarkeit der Rekonstruktion an der Reproduzierbarkeit der generierten Größen getestet ist, wird die gleiche Prozedur auf die FréjusDaten angewandt, um Aussagen über die gemessene Flavorzusammensetzung, die Energie- und Winkelverteilung zu machen.

5.1 Die Teilchenrekonstruktion

In den Neutrino Reaktionen entstehen spurbildende Teilchen ($\mu^{ \pm}, \pi^{ \pm}, \mathrm{p}$) und schauernde ($e^{ \pm}, \gamma$). Die Rekonstruktion der Neutrinowechselwirkungen hängt entscheidend davon ab, wie gut Schauer und Spuren voneinander unterscheidbar sind, ab welcher Energie welche Teilchen sichtbar sind, wie gut die Muon/Pion- und die Elektron/Photon-Trennung gelingt (Elektron steht hier für $e^{ \pm}$) und wie genau die Energie- und Winkelrekonstruktion einzelner Strukturen ist.

5.1.1 Die Spur/Schauer-Trennung

Zur Bestimmung des Teilchentyps ist es unerläßlich zu entscheiden, ob es sich bei einer Struktur im Detektor um eine Spur oder einen Schauer handelt. Hierzu sind topologische Kriterien entwickelt worden [35], die zu folgenden Definitionen von Spur und Schauer führen:

- elektromagnetische Schauer

Ein Schauer ist gekennzeichnet durch zusammengehörige gezündete Zel-
len in mindestens vier Flashkammerebenen mit mindestens drei Lükken zwischen den gezündeten Zellen, und/oder drei Mehrfachtreffern (mehr als eine gezündete Zelle pro Ebene) und/oder drei periphere gezündete Zellen (Zellen, die nicht auf der Hauptachse der Struktur liegen). Gezündete Zellen gelten als zusammengehörig, falls ihr Abstand weniger als die Photonkonversionslänge (ca. 10.5 cm) beträgt. (Die Konversionslänge bezeichnet den Weg, den ein Photon zurücklegt, bis es ein $e^{+} e^{-}$-Paar erzeugt hat, welches dann die Flashkammern zündet)

- Spur

Eine Struktur wird als Spur akzeptiert, falls eine Folge von mindestens vier gezündeten Flashkammern insgesamt und in jeder Ansicht mindestens zwei erkennbar ist.

Unter Anwendung dieser Definitionen verwechselt man oberhalb einer sichtbaren Energie von 200 MeV praktisch keinen Schauer mit einer Spur [35].

5.1.2 Die Spursichtbarkeit

Die Minimalenergie, die für spurbildende Teilchen nötig ist, um die Spurbedingung zu erfüllen, ergibt sich aus der Bethe-Bloch-Reichweite. Eine Eigenschaft von Protonen einerseits, geladenen Pionen anderseits, ist sehr von Nutzen:

Da Protonen in der Materie bereits vorhanden sind, Pionen aber erzeugt werden müssen, ist die von den Neutrinos den Protonen bzw. Pionen zur Verfügung gestellte Energie die kinetische bzw, die totale. Protonen der kinetischen Energie E haben in Eisen aber in etwa die gleiche Reichweite wie Pionen der totalen Energie E.
$\left(10 \mathrm{~cm} \mathrm{Fe} \cong E_{\pi^{ \pm}}^{\text {tot }}=317 \mathrm{MeV}, E_{p}^{k i n}=330 \mathrm{MeV}\right)$ [34]. Deswegen ist für die Energiebestimmung aus der Reichweite keine Unterscheidung notwendig. Alle Spuren, die nicht Muonen zugeordnet werden, gelten als von Pionen erzeugt.

Des Weiteren hängt, da der Detektor nicht isotrop ist, die Minimalenergie auch von der Impulsrichtung ab. Im ungünstigsten Fall, daß ein Teilchen in einer Eisenplatte läuft, bleibt es unsichtbar, während z.B. einem Pion senkrecht zu den Ebenen eine Energie von ca. 200 MeV ausreicht, um die Spurbedingung zu erfüllen. Die Abbildung (Abb. 17) zeigt den Anteil der durch Protonen und Pionen aus Neutrino Reaktionen erzeugten Strukturen in Abhängigkeit von E, der als Spur rekonstruiert wurde, der also die Spurbedingung erfüllt hat. Der Anteil, der als Schauer rekonstruiert wurde (Kap. 6.2), gilt hierbei als nicht erkannt.

Abbildung 17: Die Erkennungswahrscheinlichkeit der Pionen und Protonen als Spuren

Die Muonen aus Neutrino Reaktionen erfüllen die Spurbedingung praktisch immer (97% der getriggerten Ereignisse). In komplizierten NeutrinoWechselwirkungen wird die Erkennungswahrscheinlichkeit niedriger sein, da kurze Spuren durchaus von Schauern verdeckt werden können und damit unsichtbar sind.

5.1.3 Die Muon/Pion-Trennung

Eine Unterscheidung zwischen Muonen und Pionen kann lediglich durch starke Wechselwirkung der Pionen erfolgen, falls diese durch zusätzlich gezündete Zellen im Detektor sichtbar wird.

Als sekundäre Wechselwirkungen oder Kinks gelten:

- Die Aufgabelung einer Spur in mehrere

In den Testdetektormessungen wurde der Anteil der negativ geladenen Pionen im Energiebereich ($450-700$) MeV, bei der sich die Spur in mehrere aufgabelt, zu 0.3% bestimmt [33].

- Das Ausgehen eines Schauers von einem Punkt einer Spur, welcher nicht der primäre Vertex ist
Ladungsaustausch Reaktionen der geladenen Pionen zeigen eine solche Signatur. Die Wahrscheinlichkeit, daß ein negativ geladenes Pion der Energie 500 MeV eine solche Reaktion vollzieht, ist ca. 6% [33]. Es müssen bei Einzelspurereignissen zur Erkennung der Ladungsaustausch Reaktion ($\pi^{ \pm} \mathrm{n}(\mathrm{p}) \rightarrow \pi^{0} \mathrm{p}(\mathrm{n})$, im Mittel 20 gesetzte Zelle aus π^{0} in Ruhe) mehr als 13 gesetzte Zellen verlangt werden, um Verwechslungen mit Muonzerfällen (im Mittel 8 Zellen) mit hoher Wahrscheinlichkeit zu vermeiden.
- Spurknicke mit mehr als 90 Grad Knickwinkel

Ihre Häufigkeit beträgt bei negativ geladenen Pionen im Energiebereich $(450-700) \mathrm{MeV}$ са. 5% [33].

Da durch sekundäre Wechselwirkungen also nur etwa 5-10 \% der Pionen zweifelsfrei erkannt werden können, ist eine Muon/Pion Trennung nicht möglich. Die Absorption von Pionen in Kernen, ohne daß die Kernanregung sichtbar wird, ist die Hauptfehlerquelle für Muon/Pion-Verwechslungen.

5.1.4 Die Elektron/Photon-Trennung

Bei Einschauerereignissen ist die Trennung unmöglich, denn der sichtbare Unterschied zwischen elektron- und photoninduzierten Schauern liegt alleine in der Konversionslänge des Photons, ist also nur erkennbar, wenn andere Strukturen den Vertex anzeigen.

Elektronen zünden im Mittel im Abstand von ca. 0.49 cm vom Entsstehungsort die erste Flashkammer [33], während die Konversionslänge ca. 10.5 cm beträgt.

Bei Mehrstrukturereignissen ist der Abstand des Schaueranfangs vom Wechselwirkungspunkt erkennbar und liefert die Trennungsmöglichkeit.

Schauer, deren erste gesetzte Zelle mehr als 5 cm vom Vertex entfernt liegt, werden als photoninduziert angesehen, da in diesem Abstand 99.96% der elektroninduzierten Schauer ihre erste Flashkammer gesetzt haben[33].

Die Unterscheidung geschieht aber auch mit Hilfe der Topologie. Ein Schauer in einem Ereignis, in dem sich schon eine Muonspur befindet, kann kein elektroninduzierter Schauer sein.

Die Unmöglichkeit der Trennung von Muonen und Pionen und die Schwierigkeiten bei der Elektron/Photon-Trennung sind zwar unbefriedigend, aber nicht von großer Bedeutung, da die Reaktionsklassen trotzdem mit hoher Genauigkeit erkannt werden können (Kap. 6.3.3), denn vornehmlich die Energieund Winkelmessung ist von Bedeutung, nicht welche Struktur als welches Teilchen interpretiert wird.

5.1.5 Die Neutronen

In Neutrino Reaktionen im Detektor kann einem Neutron im Reaktionskern soviel Energie übertragen werden, daß es ihn verläßt. Neutronen sind als neutrale Teilchen für den Detektor unsichtbar und können nur an sekundären Wechselwirkungen, bei denen geladene Teilchen entstehen, erkannt werden. Die Bestimmung von Impuls und Energie des Neutrons aus den von ihm erzeugten Teilchen ist schwierig, da die gesamte Geschichte des Neutrons \mathbf{z} wischen seiner Entstehung und der sekundären Wechselwirkung im Verborgenen bleibt. Auf eine detaillierte Analyse wurde verzichtet, da diese Ereignisse sehr selten sind (2 Ereignisse in den Fréjus-Daten).

5.1.6 Die Energie- und Winkelrekonstruktion

Die Rekonstruktion der Spuren und Schauer ist grundsätzlich verschieden.

- Schauer

Die Richtung eines Schauers ergibt sich in jeder Projektion durch die Achse desjenigen Schlauches der Breite 6 cm , der bei einer Drehung um den Vertex die meisten gezündeten Zellen enthält. Die Zahl der Gesamtzellen im Schauer bestimmt die Energie [17].

- Spuren

Eine Geradenanpassung in jeder Ansicht an die ersten sieben gesetzten Zellen vom Vertex aus, aber mindestens 10 cm in Detektorlängsrichtung, liefert die Richtung. Aus der Reichweite wird über die Bethe-BlochBeziehung die Energie errechnet.
Die Güte der Energiebestimmung ist bei Muonen und Elektronen gut, $\frac{\Delta E}{E} \approx 8(13.5) \%$ bei Muonen (Elektronen) einer rekonstruierten Energie von 500 MeV senkrecht zu den Eisenplatten.

Für Pionen ist sie wesentlich schlechter und asymmetrisch, da die sichtbare Energie durch die sekundären Wechselwirkungen der Pionen systematisch zu niedrigen Energien verschoben wird [17]. Die Richtungskonstruktion demonstriert (Abb. 18) an einem Neutrinoereignis.

Abbildung 18: Die Richtungsrekonstruktion der Einzelstrukturen Die durchgezogenen Linien sind die Vektoren der generierten, die gestrichelten, die der rekonstruierten Impulse.

6 ...zur Vermessung des Ganzen

6.1 Die Vermessung von Hand

Alle Ereignisse, die die Triggerbedingung erfüllt haben, werden an einem Grafikbildschirm durchgemustert.
Die Vorgehensweise ist die folgende:
Die Strukturen werden begutachtet und das Ereignis nach möglichen Vertices abgesucht. Sind mehrere Strukturen vorhanden, ist die Vertexsuche einfach, da sie meistens auf einen Punkt weisen. Lediglich bei Einstrukturereignissen ist die Entscheidung schwierig. So zeigen z.B. kleine Schauer oft nicht die typische Keulenform. Den ungünstigsten Fall stellen die Einspurereignisse dar. Die Spur ist im allgemeinen zwar klar erkennbar, jedoch ist der Durchlaufsinn nur in einer geringen Anzahl der Ereignisse durch Vielfachstreuung erkenntlich, die anzeigt, daß die Energie niedrig ist, sich dort also das Ende befindet. Die Ambiguität bezüglich der Neutrinorichtung ist maximal. Diese Ereignisse stammen unglücklicherweise aus quasielastischen Reaktionen oder aus Einpionproduktionen mit geringem Impulsübertrag auf das Pion, sind also häufig.

Ist der Vertex festgelegt, werden von ihm ausgehend die gezündeten Zellen nach den Kriterien aus (Kap. 5.1.1) zu Strukturen zusammengefaßt und diese zur Kennzeichnung für das Rekonstruktionsprogramm mit Rahmen versehen. Die Rekonstruktion stützt sich jeweils auf alle gesetzten Zellen innerhalb eines Rahmens. Besonderes Augenmerk liegt auf der Suche nach kurzen, niederenergetischen Spuren. Ist eine sekundäre Wechselwirkung sichtbar, wird dieser Wechselwirkungspunkt zum Vertex der von dort augehenden Strukturen und zum Kink (Kap. 5.1.3) der zu ihm führenden Spur.

6.2 Der Vergleich mit der automatischen Rekonstruktion

Die alleinige Aufgabe der Vermessung von Hand ist die Festlegung der Vertices, die Zuordnung der gesetzten Zellen zu den Strukturen und die Entscheidung, ob es sich um Spuren oder Schauer handelt. Alle nachfolgenden Schritte, die Klassifizierung, die Teilchenzuordnung und Rekonstruktion, kann ein Computerprogramm ausführen.
Eine zweite Möglichkeit der Vermessung ist die Benutzung von Informationen aus der Simulation. Die Kenntnis des primären Wechselwirkungspunktes,
die Zuordnung der gesetzten Zellen zu den Strukturen und dic Information, ob es sich um ein spurbildendes oder schauerndes Teilchen handelt, wird benutzt. Diese Vorgehensweise wird zur Unterscheidung als automatische Rekonstruktion bezeichnet. Ihre Anwendung erspart die zeitintensive Prozedur der Vertexfestlegung und des Einrahmens der Strukturen, ist jedoch nur zulässig, wenn sie zu vergleichbaren Ergebnissen kommt wie die Vermessung von Hand, bzw. diese Unterschiede klein sind gegen die Fehler im Bezug auf die generierte "Wahrheit".

Um die automatische Rekonstruktion an die Handvermessung anzupassen, werden auch hier zum "Erkennen" einer Struktur als Spur vier gezündete Flashkammern gefordert, mit mindestens zwei in jeder Ansicht.

Da Hadronen durch starke Wechselwirkung im Reaktionskern (Kap. 4.1.3) vom Vertex ausgehende Schauer erzeugen können, müssen Strukturen aus Hadronen als Schauer rekonstruiert werden, falls sie bei der Handvermessung als solche angesehen würden. Die Entscheidung liefert ein χ^{2}-Test des Trajektorien-Polygon-Fits an die zu untersuchende Struktur. Detaillierte Untersuchungen legen einen Schnitt bei $\chi_{\text {cut }}^{2}=2.5$ (pro Freiheitsgrad) nahe. Falls $\chi^{\mathbf{2}}>\chi_{\text {cut }}^{2}$ ist, wird die Struktur als Schauer angesehen. Strukturen mit mehr als 50 gezündeten Flashkammern bleiben davon unbehelligt, um Fehlinterpretationen steiler Spuren (die ebenfalls ein hohes χ^{2} liefern) als Schauer auszuschließen. Der Anteil der Hadronstrukuren, die als Schauer rekonstruiert werden, beträgt ca. 4%.

Die Rechtfertigung zur Anwendung der automatischen Rekonstruktion ergibt sich aus dem Vergleich der Resultate. Die Erkennbarkeit des Wechselwirkungspunktes bei der Handvermessung ist in allen Koordinaten sehr gut, (Abb. 19 a) lediglich bei Einstrukturereignissen gibt es die in (Kap. 6.1) erläuterten Ambiguitäten. Berechnet man in jeder Koordinate den Fehler aus den Ereignissen, die nicht mehr als 10 cm vom wahren Vertex abweichen, so ergibt sich als Abschätzung des Fehlers der Vertexfestlegung im Raum $\sigma_{\tau}=\sqrt{\sigma_{x}^{2}+\sigma_{y}^{2}+\sigma_{z}^{2}}=38 \mathrm{~mm}$. Die Übereinstimmung der Multiplizitäten, also die Zahl der gesehenen Strukturen (NTR) für automatische Rekonstruktion und Handvermessung ist gut (Abb. 19 b).

Abbildung 19: Der Vergleich zwischen Handvermessung und automatischer Rekonstruktion
a) Güte der Vertexfestlegung der Handvermessung
b) Vergleich der Multiplizitätsverteilungen

Die für die Oszillationsanalyse wichtigen Größen, Neutrino-Energie (Abb. 20 a) und Neutrino-Zenitwinkel (Abb. 20 b), werden von beiden Verfahren mit geringen Abweichungen gleich rekonstruiert. Der Unterschied zwischen den generierten und den rekonstruierten Größen ist wesentlich stärker (Abb. 20) als die Abweichung der beiden Verfahren voneinander. Dieser Vergleich basiert auf einer Statistik von ca. 5.1 kty .

Abbildung 20: Der Vergleich der sichtbaren Neutrinogrößen der Handvermessung mit der automatischen Rekonstruktion und der Simulation
Die Energie E_{2} ist die Energie der automatischen Rekonstruktion beim Vergleich Hand-Auto, bzw. E_{ν} beim Vergleich Hand-Sim
a) Die Energierekonstruktion
b) Die Rekonstruktion des Zenitwinkels

6.3 Vom Säubern und Sortieren

Die Neutrino-Ereignisse aus dem Fréjus-Experiment und die generierten, seien sie nun handvermessen oder automatisch rekonstruiert, müssen in Neu-trino-Reaktionsklassen (Kap. 3.3.1) eingeteilt werden.

Hierzu wird als erstes die Frage des Containments beantwortet (Kap. 6.3.1). Der Datensatz der vertex contained Ereignisse wird vom Untergrund der stoppenden Muonen befreit und der Datensatz der contained Ereignisse von einem Teil der Einspurereignisse (Kap. 6.3.2).

Hierbei erfolgt die Entfernung der Ereignisse aus topologischen Erwägungen sowohl bei den Fréjus-Daten, als auch bei den simulierten Ereignissen. Die Gewichtung der vertex contained Ereignisse (Kap. 6.3.2) wird nur für die

Fréjus-Ereignisse durchgeführt, da die generierten Ereignisse sicher im sensitiven Volumen erzeugt wurden. Danach wird die Einteilung in Reaktionen des geladenen Stromes der ν_{e} und ν_{μ} und Reaktionen des neutralen Stromes (Kap. 6.3.3) vorgenommen.

6.3.1 Die Containmententscheidung

Um die Containmentfrage (Zur Definition siehe Kap. 3.3) zu beantworten, muß definiert werden, wann eine Spur bzw. ein Schauer zu Ende ist. Liegt dieses Ende innerhalb des Detektors, so ist die Struktur contained. Hier sei das Verfahren kurz erläutert, eine detaillierte Analyse findet sich in [35].

- Spuren

Eine Spur ist contained, falls die Verlängerung der Geradenanpassung an das Spurende um 10 cm , aber mindestens 5 cm in der Längsachse des Detektors den Detektorrand nicht kreuzt.

- Schauer

Ein Schauer ist contained, falls die Dichte der gezündeten Flashkammern in einem 20 cm breiten Streifen senkrecht zur Schauerachse innerhalb des Detektors auf 5% vom Maximalwert abfällt.

Ein Ereignis ist contained, falls alle Strukturen contained sind. Dieses Verfahren wird sowohl auf die Fréjus-Ereignisse, als auch auf die simulierten Ereignisse angewandt.

Eine Eigenschaft der Leptonen zeigt sich in der (Abb. 21 a). Die Länge der Schauer ist proportional zum Logarithmus der Leptonenergie $E_{l e p}$, für Spuren hingegen ist sie proportional zu $E_{\text {lep }}^{\mathcal{\beta}}$, wobei $\beta \approx 1.2$ für ($0.5 \leq E_{\text {lep }} \leq 1.5$) GeV [4]. Deshalb sind bei gegebener Leptonenergie Muonspuren oberhalb einer Energie von ca. 0.5 GeV länger als Schauer aus Elektronen und demzufolge geladene Stromreaktionen der Muonen größer, als die der Elektronen. Dies führt zu einer höheren Containmentwahrscheinlichkeit der $\nu_{e}^{g e l}$ Reaktionen. Die Zenitwinkelabhängigkeit der Containmentwahrscheinlichkeit ist klein (Abb. 21 b).

Abbildung 21: Das Containment der Reaktionen des geladenen Stromes
a) als Funktion der Neutrino-Energie
b) als Funktion des Zenitwinkels

Die Differenz zwischen maximaler und minimaler Containmentwahrscheinlichkeit beträgt ca. $9 \%(10.5 \%)$ für $\nu_{e}^{g e l}\left(\nu_{\mu}^{\text {gel }}\right)$. Die mittleren Containmentwahrscheinlichkeiten sind in Tabelle (Tab. 7) aufgeführt.

Reaktion	Containmentwahrscheinlichkeit
$\nu_{e}^{\text {gel }}$	90.03%
$\nu_{\mu}^{\text {gel }}$	59.29%
$\nu^{\text {neu }}$	88.35%

Tabelle 7: Die mittleren Containmentwahrscheinlichkeiten

6.3.2 Die Säuberung vom Untergrund

Die Luminositätsberechnung fußt auf einem festen sensitiven Volumen des Detektors von $\left(5 \times 5 \times 11.3 \times \mathrm{m}^{3}\right)$. Es muß also sichergestellt sein, daß alle Ereignisse, die zur Auswertung herangezogen werden, auch in diesem Volumen entstanden sind. Da bei Spuren der Durchlaufsinn nur in den wenigsten Fällen klar erkennbar ist, müssen Schnitte auf die Datensätze der vertex contained Ereignisse und der contained Ereignisse angewandt werden.

- vertex contained Ereignisse

Unter diesen Ereignissen befinden sich in den Fréjus-Daten noch solche, die durch stoppende Muonen induziert wurden. Bei einem Ereignis der Sorte (Abb. 22) ist nicht entscheidbar, ob das Muon von außen in den Detektor eingedrungen ist, oder ob der Vertex innerhalb des Detektors liegt. Diese Art der Ereignisse wird unterteilt in solche, bei denen das Muon den Detektorrand unterhalb des Horizontes passiert und solche, bei denen der Schnittpunkt oberhalb liegt. Ereignisse der ersten Sorte sind sicherlich ν_{μ} Ereignisse, von denen nur nicht bekannt ist, ob sie im Detektor oder im Gestein stattgefunden haben. Die Mitnahme der im Gestein erzeugten Ereignisse würde die Luminosität verfälschen, da sie das sensitive Volumen vergrößern. Simulationsrechnungen ergaben eine Erwartung von 11.7 ± 1.7 Ereignissen im Gestein mit einem einlaufenden Muon und 10.2 ± 1.2 Ereignissen im Detektor mit auslaufendem Muon [36], bei der Luminosität des Fréjus-Experimentes. Fréjus-Ereignisse dieser Art werden entsprechend gewichtet und verbleiben im Datensample. Ereignisse, bei denen das Muon den Detektorrand oberhalb des Horizontes kreuzt, sind meistens durch stoppende Muonen verursacht. Da die Rate der stoppenden Muonen im Verhältnis zur Anzahl der Neutrino Reaktionen sehr hoch ist (Kap. 3.3), wird einem harten Schnitt zur Vermeidung einer systematischen Unsicherheit der Vorzug vor der Rettung einiger Ereignisse gegeben. Alle Ereignisse mit weniger als 13 gezündeten Flashkammern zusätzlich zur Muonspur werden in dieser Klasse stoppenden Muonen zugordnet und in Daten und Simulation verworfen. Es verbleibt eine zu erwartendende Verseuchung der Fréjus-Ereignisse durch stoppende Muonen von 2.2 ± 2.2 Ereignissen [36].

- contained Ereignisse

Wegen der Richtungsambiguität der Einspurereignisse muß auch der Datensatz der contained Ereignisse gesäubert werden. Alle contained Ein-

Abbildung 22: Ein stoppendes oder hinauslaufendes Muon
spurereignisse, bei denen ein Ende der Spur weniger als 50 cm vom Rand entfernt liegt, finden in beiden Datensätzen keine Berücksichtigung.

Die gesäuberten Datensätze bilden die Basis des Vergleiches der
Fréjus-Daten mit der Simulation und die der Oszillationsanalyse. Falls der Untergrund sorgfältig eliminiert ist müssen die Vertexkoordinaten der FréjusEreignisse in allen Koordinaten gleichverteilt sein (Abb. 23). Die simulierten Ereignisse wurden gleichverteilt generiert. Da die Ereigniszahlen im Experiment klein gegen die Ereigniszahlen der Simulation sind unterliegen die Vertexverteilungen der Fréjus-Daten wesentlich größeren statistischen Schwankungen. Eine systematische Erhöhung der Vertexdichte an den Detektorrändern ist jedoch nicht zu erkennen.

6.3.3 Die Einteilung in die Neutrino-Reaktionsklassen

Die Vorgehensweise richtet sich nach der Topologie des Ereignisses und hat das Erkennen des geladenen Leptons zum Ziel. Unterschieden werden Einstrukturund Mehrstrukturereignisse.

Einstrukturereignisse einer nichtwechselwirkenden Spur mit einem rekonstruierten Impuls größer 200 MeV werden als ν_{μ} Reaktion des geladenen Stromes ($\nu_{\mu}^{g e l}$), und solche mit einem Schauer eines rekonstruierten Impulses größer 150 MeV als ν_{e} Reaktionen des geladenen Stromes ($\nu_{e}^{\text {pel }}$) klassifiziert. Alle anderen gelten als Reaktion des neutralen Stromes (ν gel).

Bei Mehrstrukturereignissen führen Spuren (Schauer) mit rekonstruierten Impulsen größer 500 (700) MeV zur Klassifizierung als Reaktion des geladenen Stromes der entsprechenden Flavor. Enthält ein Ereignis keines von beiden, entscheidet die höchstenergetische Struktur. Ist beides vorhanden, so werden weitere Größen, wie der Winkel zwischen dem Impuls der höchstenergetischen Struktur und dem Gesamtimpuls und der Anteil ihrer Energie an der Gesamtenergie, zur Entscheidungsfindung herangezogen.

Da sich die Reaktionen des neutralen Stromes durch das Nichtvorhandensein des geladenen Leptons auszeichnen, kann es für sie keine positiven Einteilungskriterien geben. Alle Ereignisse, die nicht als Reaktionen des geladene Stromes klassifiziert werden können, werden als Reaktion des neutralen Stromes angesehen.

Abbildung 23: Die Verteilungen der Vertexkoordinaten der Fréjus-Ereignisse
(Fr) und der Simulation (Sim)
a) X-Achse (kurze horizontale Achse)
b) Y-Achse (vertikale Achse)
c) Z-Achse (lange horizontale Achse)

6.4 Die Ereigniszahlen der Simulation

Wegen der Gleichheit der Resultate aus der Handvermessung und der automatischen Rekonstruktion wird ein kombinierter Ereignisdatensatz zur weiteren Analyse benutzt. Dies verringert den statistischen Fehler erheblich. Die Simulation ergibt einen gemischten Ereignisdatensatz von 29.4 kty :

- 5.1 kty handmessen und klassifiziert
- 24.3 kty automatisch rekonstruiert

Die Zahl der Ereignisse nach den in (Kap. 6.3) diskutierten Schnitten zeigt (Tab. 8).

	handvermessen			autom. rekonstruiert		
	$\nu_{\mu}^{\text {gel }}$	$\nu_{e}^{\text {gel }}$	$\nu^{\text {neu }}$	$\nu_{\mu}^{\text {gel }}$	$\nu_{e}^{\text {gel }}$	$\nu^{\text {neu }}$
contained	256	243	47	1238	1139	173
vertex cont.	145	33	2	690	92	8
Alle	401	276	49	1928	1231	181

Tabelle 8: Die Ereigniszahlen der Simulation
Die Indices (gel) bzw.(neu) stehen für Reaktionen des geladenen bzw. des neutralen Stromes

6.5 Die Güte der Rekonstruktion

Mit Hilfe der vorstehend diskutierten Verfahren stehen jetzt die Vierervektoren der rekonstruerten Teilchen zur Verfügung, und es ist an der Zeit, die Güte zu testen. Testgrößen sind die Flavorerkennung und die Genauigkeit der Rekonstruktion von Neutrino-Energie und Neutrino-Zenitwinkel. Dabei sei angenommen, daß die sichtbare Energie $E_{\text {vis }}$ gleich der Neutrino-Energie und die Richtung des Gesamtimpulses die Neutrinorichtung ist.

6.5.1 Die Flavorerkennung

Die Erkennbarkeit der Flavor ist, für alle Ereignisse in automatischer Rekonstruktion vor der Datenreduktion, in (Abb. 24) als Matrix angegeben. Diese

$$
\left(\begin{array}{c}
\nu_{\mu}^{g e l} \\
\nu_{e}^{g e l} \\
\nu^{\text {neu }}
\end{array}\right)_{\text {rek }}=\left(\begin{array}{lll}
0.97 & 0.09 & 0.49 \\
0.02 & 0.86 & 0.24 \\
0.01 & 0.05 & 0.27
\end{array}\right) *\left(\begin{array}{c}
\nu_{\mu}^{g e l} \\
\nu_{e}^{g e l} \\
\nu_{\text {neu }}
\end{array}\right)_{\text {gen }}
$$

Abbildung 24: Die Matrix der Flavorerkennung der automatischen Rekonstruktion

Matrix ist so zu verstehen, daß 97% der tatsächlichen $\nu_{\mu}^{g e l}$ Ereignisse auch als $\nu_{\mu}^{\text {gel }}$ rekonstruiert werden, es existiert aber eine Verunreinigung durch 9% der wahren $\nu_{e}^{\text {gel }}$ Ereignisse bzw. 49% der $\nu^{\text {neu }}$ Ereignisse. Die Erkennung stützt sich im wesentlichen (Kap. 6.3.3) auf die Entdeckung des Leptons, ist also bei Reaktionen des geladenen Stromes hoch, bei neutralen Stromreaktionen jedoch nur mäßig.

Bei der Handvermessung ist die Erkennung der $\nu^{\text {neu }}$ etwas höher, (ca. 42%), da das menschliche Auge zusätzliche Informationen, wie periphere Treffer neben Spuren, verwerten kann, auf die sich das Erkennungsprogramm nicht bezieht. Die Fehlinterpretationen Elektron/Photon und Muon/Pion sorgen dafür, daß neutrale Stromreaktionen sich ihrer Entdeckung weitestgehend entziehen.

Als Vorteil bei dieser systematischen Unsicherheit ist die Tatsache zu werten, daß neutrale Stromreaktionen sowohl durch den Wirkungsquerschnitt als auch durch die Triggereigenschaften benachteiligt sind. Das generierte Ereignisverhältnis nach Erfüllung der Triggerbedingung ist ($\nu_{\mu}^{\text {gel }}: \nu_{e}^{\text {gel }}: \nu^{\text {neu }}=1$. : 0.64 : 0.18) .

Im Datensample sind also mehr wahre $\nu_{\mu}^{g e l}$ als $\nu_{e}^{g e l}$ Ereignisse, aber es werden auch mehr $\nu^{\text {neu }}$ fälschlicherweise in die $\nu_{\mu}^{g e l}$ als in die $\nu_{e}^{\text {gel }}$ Klasse eingeordnet. Damit ergibt sich durch die Verwechslung der Klassen eine Verseuchung der rekonstruierten $\nu_{\mu}^{g e l}\left(\nu_{e}^{g e l}\right)$ durch $\nu^{\text {neu }}$ von ca. 9% (7\%) der Ereignisse in der jeweiligen Klasse. Das Verhältnis der rekonstruierten geladenen Stromreaktionen der ν_{e} und ν_{μ} wird also nur unwesentlich beeinflußt.

6.5.2 Die Rekonstruktion von Neutrino-Energie und Richtung

Die Flavor der Neutrinos wird bei geladenen Stromreaktionen gut erkannt, wie steht es aber mit der Rekonstruktion der Neutrino-Energie und Richtung?

Da alle Effekte dergestalt sind, daß Energie unsichtbar im Detektor deponiert wird, ist die sichtbare Energie systematisch kleiner als die NeutrinoEnergie. Die Ungenauigkeit in der Rekonstruktion erkannter Strukturen ist dabei von untergeordneter Rolle. Bedeutend sind vielmehr die nicht gesehenen Spuren, also solche, die das Spurkriterium nicht erfüllt haben, und sekundäre Wechselwirkungen der Hadronen, wobei Energie unerkannt an das Eisen abgegeben wird. Niederenergetische Pionen nehmen ihre Ruhemasse unerkannt mit, vermindern also die sichtbare Energie. Nukleonen stören empfindlich die Impulsbilanz, da z.B. ein Nukleon der Energie von $50 \mathrm{MeV} / \mathrm{c}^{2}$, das niemals gesichtet wird (Reichweite ca. 0.35 cm Eisen), einen Impuls von $300 \mathrm{MeV} / \mathrm{c}$ unerkannt entführt.

Alle weiteren Aussagen über die Auflösung stützen sich auf die Ereignisse nach allen Schnitten, klassifiziert durch die rekonstruierte Flavor, beinhalten also die Flavorverwechslung.

Betrachtet wird die Energieauflösung $\frac{\Delta E}{E_{\nu}}\left(\Delta \mathrm{E}=E_{\nu}-E_{v i a}\right)$ und, wegen der Isotropie des Oszillationseffektes bezüglich der Vertikalen, die Auflösung im Zenitwinkel $\Delta \vartheta_{Y}=\vartheta_{Y}^{\nu}-\vartheta_{Y}^{v_{i}}$.

Die relativen Abweichungen der sichtbaren Energie von der Neutrino-Energie und die Abweichungen im Zenitwinkel zwischen rekonstruktiertem Winkel und generiertem Neutrinowinkel sind in (Abb. 25) für die Elektron- und Muonneutrino Reaktionen des geladenen Stromes aufgetragen.

Die Energieverteilungen sind asymmetrisch, der linke Teil ($\frac{\Delta E}{E_{\nu}} \leq 0$) spiegelt die Fehler des Rekonstruktionsprogrammes wieder, während der rechte Teil ($\frac{\Delta E}{E_{\nu}} \geq 0$) anzeigt, wieviel Energie unerkannt an den Detektor abgegeben wurde. Die Zenitwinkelverteilung sind symmetrisch.

Im folgenden wird die Abhängigkeit dieser Größen von der Neutrino-Energie untersucht. Da die Containmentwahrscheinlichkeit für die $\nu_{e}^{g e l}$ Reaktionen sehr hoch ist (Tab. 7), wurde nur für die Muonneutrinos zwischen contained und vertex contained Ereignissen unterschieden.

Abbildung 25: Die Abweichungen zwischen Rekonstruktion und Simulation
a) Die relative Energieabweichung
b) Die Zenitwinkelabweichung

Zur Berechnung der Fehler wurde als Erwartung $\Delta \mathrm{E}=0$ bzw.
$\Delta \vartheta_{Y}=0$ zugrunde gelegt und für die Energieauflösung nur der rechte Teil der Verteilung benutzt.

Damit nicht einige wenige Ereignisse mit großen Fehlern die Aufösung dominieren wurden zur Berechnung jeweils die schlechtesten 5\% der Ereignisse nicht berücksichtigt.

Da die Wirkungsquerschnitte für die inelastischen Neutrino Reaktionen mit der Neutrino-Energie stark ansteigen wird die Energieauflösung mit wachsender Neutrino-Energie schlechter (Abb. 26). Der Anstieg ist bei den Elektronneutrino Ereignissen schwächer als bei den Ereignissen der Muonnneutrinos (Abb. 26 a), da durch die Schnitte ein großer Anteil der quasielastischen Muonneutrino Reaktionen eliminiert wurde und diese eine gute Energieauflösung zeigen.

Abbildung 26: Die Energieauflösung
a) Der Vergleich zwischen Muonneutrinos und Elektronneutrinos
b) Der Vergleich zwischen contained und vertex contained Muonneutrino Ereignissen

Ein Unterschied bei den Muonneutrino Ereignissen zwischen contained Ereignissen und vertex contained Ereignissen ist nur im Niederenergiebereich $E_{\nu} \leq 1 . \mathrm{GeV}$ feststellbar (Abb. 26 b), dort ist die Anzahl der vertex contained Ereignisse jedoch klein. Der Verlust an sichtbarer Energie durch das hinauslaufende Muon ist also im Mittel sehr gering.

Die Zenitwinkelauflösung ist für $E_{\nu} \leq 1 . \mathrm{GeV}$ schlecht $\geq 20^{\circ}$ und erreicht bei Neutrino-Energien größer 5 GeV etwa 8° (Abb. 27). Der Verlauf ist für Elektronneutrinos und Muonneutrinos in etwa gleich (Abb. 27 a), unterliegt bei den Elektronneutrinos jedoch größeren statistischen Schwankungen.

Bei den Muonneutrino Reaktionen ist die Winkelauflösung der vertex contained Ereignisse für niedrige Neutrino-Energien schlechter, bei großen jedoch besser, als die der contained Ereignisse (Abb. 27 b). Dies liegt daran, daß vornehmlich die elastischeren Reaktionen mit langen Muonspuren vertex contained sind, das Lepton aber besser die Neutrinorichtung anzeigt, als das Hadronsystem.

Abbildung 27: Die Zenitwinkelauflösung
a) Der Vergleich zwischen Muonneutrinos und Elektronneutrinos
b) Der Vergleich zwischen contained und vertex contained Muonneutrino Ereignissen

Einen Vorteil der Isotropie des Oszillationseffektes bezüglich der Vertikalen zeigt (Abb. 28), die demonstriert, daß die Winkelauflösung im Raum systematisch schlechter ist als die Zenitwinkelauflösung.

Abbildung 28: Der Vergleich zwischen der Zenitwinkelauflösung und der Auflösung des Winkels im Raum

7 Modell und Experiment treffen aufeinander

Das Stadium ist erreicht, in dem die Ergebnisse aus dem Experiment mit den simulierten Ereignissen verglichen werden können, um festzustellen, ob die Fréjus-Daten mit den Vorhersagen aus den Modellen der atmosphärischen Schauerentwicklung über den Fluß atmosphärischer Neutrinos verträglich sind.

Die Analyse betrachtet die absoluten Ereigniszahlen, die Multiplizitäten und die Verteilungen der sichtbaren Energie und des Winkels des sichtbaren Gesamtimpulses im Raum.

Der Vergleich basiert auf den im Fréjus-Experiment gemessenen Ereignissen entsprechend einer Luminosität von 1.56 kty und einem generierten, darauf normierten Ereignisdatensatz der Simulation. Die in (Kap. 6.3) diskutierten Schnitte wurden angewandt.

	Fréjus-Daten			Simulation		
	$\nu_{\mu}^{\text {gei }}$	$\nu_{e}^{\text {gei }}$	$\nu^{\text {neu }}$	$\nu_{\mu}^{\text {gei }}$	$\nu_{e}^{\text {gei }}$	$\nu^{\text {neu }}$
contained	68	57	4	79.2	73.3	11.7
vertex cont.	41	4	1	44.3	6.6	0.5
Alle	109	61	5	123.5	79.9	12.2

Tabelle 9: Der Vergleich der Ereigniszahlen des Fréjus-Experiments mit der Simulation

Im Vergleich der totalen Ereigniszahlen ist ersichtlich, daß die Simulation in allen Klassen mehr Ereignisse vorhersagt, als im Experiment gemessen wurden. Die Abweichung der totalen Anzahl beträgt ca. 20% und ist damit in der Größenordnung der Flußunsicherheit (Kap. 2.1).

Das Verhältnis der rekonstruierten Ereigniszahlen ($\nu_{\mu}^{g e l}: \nu_{e}^{g e l}: \nu^{\text {neu }}$) ist für die Simulation (1. : $0.65: 0.1$) und für das Experiment (1: $0.56: 0.05$).

Der Vergleich der Multiplizitäten (Abb. 29) zeigt eine gute Übereinstimmung zwischen Simulation und Experiment, vornehmlich in der Rate der Ein-struktur-Ereignisse.

Abbildung 29: Die Multiplizitätsverteilungen
a) ν_{e} Reaktionen des geladenen Stromes
b) ν_{μ} Reaktionen des geladenen Stromes
c) ν Reaktionen des geladenen Stromes

Die Verteilungen der sichtbaren Energie der geladenen Stromreaktionen im Fréjus-Experiment fallen steil ab. Oberhalb von 2 GeV liegen noch 15 (20.9) Ereignisse für $\nu_{e}^{g e l}\left(\nu_{\mu}^{g e l}\right)$. Bei der Simulation betragen die Anzahlen 20.2 (24.6).

Betrachtet man die Energiespektren einer sichtbaren Energie kleiner 2 GeV (Abb. 30), so erkennt man, daß die Vorhersage vornehmlich bei Energien größer 0.6 (1.2) GeV bei den $\nu_{e}^{g e l}\left(\nu_{\mu}^{g e l}\right)$ oberhalb der Messung liegt. Im Niederenergiebereich ist die Übereinstimmung besser.
χ^{2} - Tests an die Energiehistogramme (Abb. 30) liefern χ^{2} - Wahrscheinlichkeiten $\mathrm{P}\left(\chi^{2}\right)$ von (11/19/13)\% für die Reaktionen ($\nu_{\mu}^{g e l} / \nu_{e}^{\text {gel }} / \nu^{\text {gel }}$).

Wegen der geringen Statistik in einigen Energieintervallen ist die Anwendung des χ^{2} - Tests mit Vorsicht zu genießen. Deswegen wurden die Ereignisse in statistisch gleichwertige Intervalle (Anzahl Fréjus-Ereignisse ca. 10) eingeteilt und auch für diese Verteilungen (über das gesamte Energiespektrum) χ^{2} - Tests durchgeführt. Die χ^{2} - Wahrscheinlichkeiten $\mathrm{P}\left(\chi^{2}\right)$ betragen ($12 / 3 / 7$)\% für die Reaktionen ($\nu_{\mu}^{g e l} / \nu_{e}^{g e l} / \nu^{\text {gel }}$).

Die Winkelverteilungen (Abb. 31) der geladenen Stromreaktionen sind gut verträglich mit Gleichverteilungen, während die Simulation eine deutliche Überhöhung (bei wesentlich geringerem statistischen Fehler) für Ereignisse mit horizontalem Impuls zeigt. Die χ^{2}-Tests an die abgebildete Verteilung und die Verteilung mit gleichbesetzte Intervallen () liefern $\mathrm{P}\left(\chi^{2}\right)$ Werte von $45(53) \%$ $, 37(25) \%, 13(37) \%$ für die Reaktionen ($\nu_{\mu}^{g e l}, \nu_{e}^{g e l}, \nu^{g e l}$).

Als Resümmee ergibt sich, daß der Vergleich zwischen Simulation und Experiment auf der Basis dieser geringen Statitik keine signifikanten Unterschiede zeigt.

Abbildung 30: Die Verteilungen der sichtbaren Energie kleiner 2 GeV
a) ν_{e} Reaktionen des geladenen Stromes
b) ν_{μ} Reaktionen des geladenen Stromes
c) ν Reaktionen des geladenen Stromes

Abbildung 31: Die Zenitwinkelverteilungen des sichtbaren Impulses
a) ν_{e} Reaktionen des geladenen Stromes
b) ν_{μ} Reaktionen des geladenen Stromes
c) ν Reaktionen des geladenen Stromes

Im Hinblick auf die Oszillationsanalysen sei das Verhältnis R der Anzahlen der geladenen Stromreaktionen angegeben.

$$
R_{i}=\frac{N\left(\nu_{r}^{g e l}\right)_{i}}{N\left(\nu_{\mu}^{g e l}\right)_{i}} \quad \text { mit: } \quad i=\left\{\begin{aligned}
F r & \triangleq \text { Frejus-Daten } \\
S i m & \triangleq \text { Simulation ohne Oszillationen } \\
O s z & \triangleq \text { Simulation mit Oszillationen }
\end{aligned}\right.
$$

Es beträgt für die Fréjus-Daten $R_{F_{r}}=0.56 \pm 0.09_{\text {stat }}$ und für die simulierten, auf 1.56 kty normierten Ereignisse $R_{\text {sim }}=0.65 \pm 0.09_{\text {stat }} \pm 0.08_{\text {sys }}$.

8 Neutrino-Oszillationen ernst genommen

Nachdem der Vergleich zwischen der Simulation und dem Experiment eine weitgehende Übereinstimmung geliefert hat, soll jetzt quantitativ untersucht werden, welche Modifikationen der Ereignisraten bei der Existenz von Neu-trino-Oszillationen zu erwarten sind. Die Frage nach der Existenz der NeutrinoOszillationen ist in jüngster Vergangenheit auch durch verschiedene Publikationen der Kamiokande-Kollaboration [37] [38] wieder ins Rampenlicht der physikalischen Bühne getreten.

Das im Kamiokande-Detektor beobachtete Defizit an Single Ring Ereignissen (vergleichbar den $\nu_{\mu}^{\text {gel }}$ Reaktionen) läßt sich im Rahmen der $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oder $\nu_{e} \leftrightarrow \nu_{\mu}$ Oszillationen erklären [38].

Das gemessene Verhältnis $R_{F r}$ des Fréjus-Experimentes jedoch ist im Rahmen der Statistik mit der generierten Erwartung $R_{\text {Sim }}$ vereinbar. Ziel dieses Abschnitts ist es deswegen, zu untersuchen, welche Bereiche der Parameterebene ($\Delta m_{\text {vak }}^{2}, \sin ^{2} 2 \vartheta_{v a k}$) mit dem gemessenen Verhältnis $R_{F r}$ nicht verträglich sind, um entsprechende Ausschlußgrenzen zu erlangen. Die Reaktionen des neutralen Stromes sind für diese Analyse unbrauchbar (Kap. 3.3.1).

Die Modifikationen durch Neutrino-Oszillationen wirken sich nicht auf die Art der Wechselwirkungen der Neutrinos im Detektor, sondern nur auf die Flavorzusammensetzung des Neutrinoflusses am Ort des Detektors aus, oder anders gesagt: die Neutrino-Oszillationen legen nicht fest, wie die Neutrinos reagieren, sondern nur in welchem Zustand sie am Detektor eintreffen. Daraus leitet sich die Vorgehensweise ab.

Die Generierung und Vermessung erfolgt unter Berücksichtigung des Neutrinoflusses ohne Oszillationen. Dem Einfluß der Oszillationen wird durch eine Gewichtung der Ereignisse Rechnung getragen, die auf der jeweiligen Oszillationswahrscheinlichkeit $\mathrm{P}\left(\theta_{\nu}, E_{\nu}, \Delta m_{v a k}^{2}, \sin ^{2} 2 \vartheta_{v a k}\right)$ und dem energieabhängigen Verhältnis des Flusses atmosphärischer Neutrinos basiert.

Der entscheidende Vorteil ist rein technischer Art, die Ereignisse müssen nur einmal generiert und vermessen werden, der Test des Einflusses verschiedener Parameter fußt dann auf einem Datensatz.

8.1 Die Oszillationswahrscheinlichkeit

Im Fréjus-Detektor werden Neutrinos detektiert, die unterschiedliche Vorgeschichten durchlebt haben. Neutrinos, die von oben in den Detektor eindringen (ν_{\downarrow}), sind nur durch die Erdatmosphäre und einige hundert Meter Fels geflogen - jene, die von unten kommen (ν_{\uparrow}), haben mehrere tausend Kilometer Erdmaterial durchquert.

Abhängig von der Energie des Neutrinos, seinem Weg und den Parametern der Oszillationstheorie ($\Delta m_{v a k}^{2}, \sin ^{2} 2 v_{v a k}$) hat jedes generierte Ereignis eine unterschiedliche Oszillationswahrscheinlichkeit am Detektorort.

Außerdem muß unterschieden werden, ob es sich um Vakuum-Oszillationen handelt (ν_{l} bei $\nu_{e} \leftrightarrow \nu_{\mu}, \nu_{e} \leftrightarrow \nu_{\tau}$ und alle ν bei $\nu_{\mu} \leftrightarrow \nu_{\tau}$ Oszillationen), oder um Materie-Oszillationen.

Bei Vakuum-Oszillationen (Kap. 2.2.1) ergibt sich die Oszillationswahrscheinlichkeit analytisch. Die Oszillationslänge (Kap. 2.2.1) variiert im betrachteten Intervall
$\left(10^{-5} \leq \Delta m_{\text {vak }}^{2} \leq 1\right) e V^{2}$ und $\left(0.1 \leq E_{\nu} \leq 20\right) \mathrm{GeV}$ zwischen ca. 2.5 km und ca. $5 \cdot 10^{7} \mathrm{~km}$. Bei großen $\Delta m_{\text {vak }}^{2}$ und kleinen Neutrino-Energien ist sie also in der Größenordnung der Dicke der Erdatmosphäre.

Bei Materie-Oszillationen ist die Ermittlung der Oszillationswahrscheinlichkeit wesentlich komplizierter. Da die Erde kein homogener Körper ist, die Oszillationswahrscheinlichkeit aber über $\mathrm{V}(\mathrm{x})$ von der Elektronendichte abhängt, kommt es wesentlich auf die Trajektorie des Neutrinos an.

Die Bewegungsgleichung der Flavoreigenzustände (Kap. 2.2.2) wird zur Bestimmung von $\mathrm{P}\left(\theta_{\nu}, E_{\nu}, \Delta m_{e \mu}^{2}, \sin ^{2} 2 \vartheta_{e \mu}\right)$ numerisch integriert. Das Mersonverfahren zur Lösung gekoppelter, linearer Differentialgleichungen erster Ordnung kommt hierbei zur Anwendung. Der Berechnung des Potentiales V(x) (Abb. 32) liegt die Verteilung der Erddichte nach Stacey [39] zugrunde.

Die Elektronendichte in der Erde verläuft nicht kontinuierlich als Funktion des Abstandes vom Erdmittelpunkt, sondern weist Sprünge auf. In diesem Modell existieren zwei Dichte-"Plateaus" im Kern und drei im Erdmantel. Aus der Elektronendichte der Erde in Verbindung mit dem Energiespektrum der Neutrinos ergibt sich der interessante Bereich von $\Delta m_{\text {vak }}^{2}$ zur Beobachtung des Resonanzeffektes zu ($10^{-4}-10^{-2}$) eV^{2}.

Abbildung 32: Die Potentialverteilung der Erde als Funktion des Abstandes R vom Erdmittelpunkt

Einige Facetten der Oszillationswahrscheinlichkeit sollen als nächstes beleuchtet werden. Die (Abb. 33) zeigt den Verlauf der Oszillationswahrscheinlichkeit für festes $\Delta m_{v a k}^{2}$ und festen Mischungswinkel $\sin ^{2} 2 \vartheta_{\text {vak }}$ als Funktion der Neutrino-Energie bei diametralem Durchgang durch die Erde.

Die Oszillationswahrscheinlichkeit ist zwar nur Funktion von $\frac{\Delta m_{\text {wak }}^{2}}{E_{\nu}}$ nicht von E_{ν} alleine, aber da in dem Fréjus-Experiment das Energiespektrum vorgegeben ist wurde dieser Auftrag gewählt. Aus den Diagrammen lassen sich damit jedoch auch die Oszillationswahrscheinlichkeiten für andere Wertepaare vom $\Delta m_{v a k}^{2}$ und E_{ν} ablesen.

Die Interpretation ist mit Hilfe der Resonanzformel aus (Kap. 2.2.2) und dem Verlauf der Erddichte möglich. Dem Verlauf der Vakuum-Oszillationen werden Resonanzen überlagert, die aus den verschiedenen Plateaus der Dichteverteilung der Erde resultieren. Diese Resonanzen sind bei festen Parametern $\left(\sin ^{2} 2 \vartheta_{v a k}, \Delta m_{\text {vak }}^{2}\right)$ abhängig vom Produkt von Neutrino-Energie und Potential ($E_{\nu} \cdot \mathrm{V}$), deswegen gehören die Resonanzen bei den niedrigeren NeutrinoEnergien zu den hohen Dichten der Kernplateaus, während die Resonanzen bei den höheren Neutrino-Energien durch die Manteldichten verursacht werden.

Abbildung 33: Die Oszillationswahrscheinlichkeit als Funktion der Neu-trino-Energie
Parameter: $\quad \Delta m_{e \mu}^{2}=10^{-3} \mathrm{eV}^{2} \quad$ a) $\vartheta_{e \mu}=0.1 \quad$ b) $\vartheta_{e \mu}=0.2$

Verändert man den Mischungswinkel (Abb. 34), so ändert sich die Lage der Resonanzen über einen großen Parameterbereich kaum, die Stärke der Resonanzen jedoch ist sehr unterschiedlich (vergleiche z.B. [40]).

Abbildung 34: Die Modifikation der Oszillationswahrscheinlichkeit bei Veränderung des Mischungswinkels
Parameter: $\quad \Delta m_{e \mu}^{2}=10^{-3} \mathrm{eV}^{2} \quad$ a) $\vartheta_{e \mu}=0.05 \quad \vartheta_{e \mu}=0.1$
b) $\vartheta_{e \mu}=0.05 \quad \vartheta_{e \mu}=0.1 \quad \vartheta_{e \mu}=0.25$

Anders hingegen wirkt sich bei festen Parametern eine Änderung der Trajektorie (Abb. 35) aus. Die Lage, die Anzahl und die Stärke der Resonanzen verändern sich, so daß Neutrino-Energien existieren (in diesem Beispiel ca. 1.2 GeV), für die die Oszillationswahrscheinlichkeit bei einem Weg verschwindet, während sie bei einem anderen maximal wird. Das ist darauf zurückzuführen, daß zum einen der Dichteverlauf auf den Wegen unterschiedlich ist, zum anderen man die Oszillationsfunktionen zu einer anderen Phase beobachtet.

Im Lichte dieser Tatsachen wird ersichtlich, daß für jeden Parametersatz $\Delta m_{v a k}^{2}$ und $\sin ^{2} 2 v_{v a k}$ optimale Fenster in der Energie und im Zenitwinkel existieren, unter denen man die Neutrino-Oszillationen beobachten sollte.

Dies ist wegen der Auflösung des Detektors (Kap. 6.5.2), aber vor allem wegen der niedrigen Ereigniszahlen mit dem Fréjus-Detektor nicht möglich. Es muß über einen großen Energie- und Winkelbereich summiert werden, um die statistischen Fehler zu verkleinern, was den Effekt auswäscht.

Abbildung 35: Die Oszillationswahrscheinlichkeit als Funktion der Trajektorie durch die Erde für $\theta_{\nu}=0^{\circ}$ und $\theta_{\nu}=70^{\circ}$
Parameter: $\Delta m_{e \mu}^{2}=5 \cdot 10^{-4} \mathrm{eV}^{2} \quad \vartheta_{e \mu}=0.25$

Die numerische Lösung der Differentialgleichung ist rechenzeitintensiv und der Anteil der Neutrinos, die durch die Erde fliegen und den Kern treffen ist gering, da der Kern nur ca. 14% des (halben) Raumwinkels ausmacht. Ein Neutrino, daß den Mantel durchquert sieht aber ein relativ konstantes Potential. Dies liefert die Motivation zur Untersuchung wie gut eine Näherung der Erde durch eine Kugel homogener Dichte das detaillierte Modell ersetzt.

Bei konstanter Erddichte (Kap. 2.2.2) ergibt sich P($\left.\theta_{\nu}, E_{\nu}, \Delta m_{e \mu}^{2}, \sin ^{2} 2 \vartheta_{e \mu}\right)$ wieder analytisch. Die (Abb. 36) zeigt den Verlauf der Oszillationswahrscheinlichkeit für "Manteldichte" und variable Dichte als Funktion des Zenitwinkels exemplarisch für einen Parametersatz ($\Delta m_{v a k}^{2}, \sin ^{2} 2 \vartheta_{v a k}$). Hierbei wurde als homogenes Potential $\mathrm{V}(\mathrm{x})=\mathrm{V}$ das Potential in der Mitte des innersten Mantelplateaus gewählt ($V \approx 2 \cdot 10^{-13} \mathrm{eV}^{2}$), im folgenden Manteldichte genannt. Die Approximation ist für diametralen Durchgang und $\theta_{\nu}=30^{\circ}$, da die Neutrinos den Kern durchlaufen erwartet schlecht, während bei $\theta_{\nu}=45^{\circ}$ und $\theta_{\nu}=70^{\circ}$ eine gute Näherung gegeben ist. Diese Näherung ist ein brauchbarer Ansatz, da die Approximation nur für wenige Neutrinos unbefriedigend ist.

Abbildung 36: Der Vergleich der Oszillationswahrscheinlichkeiten als Funktion des Zenitwinkels für die Modelle der Manteldichte und der variablen Dichte Parameter: $\Delta m_{e \mu}^{2}=10^{-3} \mathrm{eV}^{2} \quad \sin ^{2} 2 \vartheta_{e \mu}=0.4$
$\begin{array}{ll}\text { a) } \theta_{\nu}=0^{\circ} & \text { b) } \theta_{\nu}=30^{\circ}\end{array}$
c) $\theta_{\nu}=45^{\circ}$ d) $\theta_{\nu}=70^{\circ}$

8.2 Die Gewichtung

Die Gewichtung der simulierten Ereignisse zur Berücksichtigung des Oszillationseffektes ist prinzipiell für Materie-Oszillationen und Vakuum-Oszillationen gleich, nur die Berechnung der Oszillationswahrscheinlichkeit ist verschieden.

Die Vorgehensweise soll am Beispiel der $\nu_{e} \leftrightarrow \nu_{\mu}$ Oszillationen aufgezeigt werden (vergleiche z.B. [40]). Für jedes rekonstruierte Ereignis wird aus der Simulation die generierte Flavor, die Neutrino-Energie und der NeutrinoZenitwinkel abgelesen. Aus diesen Größen wird, unter Beachtung des unterschiedlichen Potentialtermes für Neutrinos und Antineutrinos (Kap. 2.2.2), die Oszillationswahrscheinlichkeit berechnet.

Sei dieses Ereignis ein generiertes ν_{e}-Ereignis (für $\bar{\nu}_{e}, \nu_{\mu}$ und $\bar{\nu}_{\mu}$ ist die Argumentation analog), so ist dessen Häufigkeit proportional zum Fluß $\Phi_{\nu}\left(\theta_{\nu}, E_{\nu}\right)$ der ν_{e}. Der erwartete ν_{e}-Fluß unter der Oszillationshypothese $\tilde{\Phi}_{\nu_{e}}\left(\theta_{\nu}, E_{\nu}\right)$ ist dann:

$$
\begin{aligned}
\bar{\Phi}_{\nu_{e}}\left(\theta_{\nu}, E_{\nu}\right)= & \underbrace{\Phi_{\nu_{e}}\left(\theta_{\nu}, E_{\nu}\right) \cdot\left(1-\mathrm{P}\left(\theta_{\nu}, E_{\nu}, \Delta m_{e \mu}^{2}, \sin ^{2} 2 \vartheta_{e \mu}\right)\right)}_{(*)} \\
& +\underbrace{\Phi_{\nu_{\mu}}\left(\theta_{\nu}, E_{\nu}\right) \cdot \mathrm{P}\left(\theta_{\nu}, E_{\nu}, \Delta m_{e \mu}^{2}, \sin ^{2} 2 \vartheta_{e \mu}\right)}_{(* *)}
\end{aligned}
$$

Wobei (\star) die Anzahl der nicht oszillierten ν_{e} ist und ($\star \star$) die Zahl der ν_{μ} ist, die in ν_{e} oszilliert sind.

Der Quotient $G\left(\nu_{e}, \Delta m_{v a k}^{2}, \sin ^{2} 2 \vartheta_{v a k}\right)=\frac{\Phi_{e}}{\Phi} \nu_{e}$ ist die relative Häufigkeit mit der dieses Ereignis unter der Oszillations-Hypothese gemessen werden sollte, also der gesuchte Gewichtungsfaktor zur Berücksichtigung der Oszillationen.

Die $G\left(\nu, \Delta m_{v a k}^{2}, \sin ^{2} 2 \vartheta_{v a k}\right)\left(\nu=\nu_{e}, \bar{\nu}_{e}, \nu_{\mu}, \bar{\nu}_{\mu}\right)$ sind reine Flußgewichte, die unabhängig von der Rekonstruktion bestimmt werden. Da $\Phi_{\nu_{e}}\left(\theta_{\nu}, E_{\nu}\right) \leq$ $\Phi_{\nu_{\mu}}\left(\theta_{\nu}, E_{\nu}\right)$ ist sind ν_{e} Gewichte größer 1 und ν_{μ} Gewichte kleiner 1. Durch $\nu_{e} \leftrightarrow \nu_{\mu}$ Materie-Oszillationen wird das Verhältnis R also erhöht.

Die Gewichte sind in der Größenordnung ca. (0.6-1.8). Die Gewichtung des Samples ist also statistisch unproblematisch, da nicht einige Ereignisse die Verteilung dominieren.

Zur Erlangung des erwarteten Verhältnisses unter Berücksichtigung der Neutrino-Oszillationen bei gegebenen Parametern ($\Delta m_{\text {vak }}^{2}, \sin ^{2} 2 \vartheta_{v a k}$) werden diese Gewichte aufsummiert, so daß jedes Ereignis (i) nicht 1 zählt sondern $G_{i}\left(\nu, \Delta m_{v a k}^{2}, \sin ^{2} 2 v_{v a k}\right)$. Dabei wird die rekonstruierte Flavor benutzt, wodurch die Flavorverwechslung berücksichtigt wird.

Ein generiertes ν_{e} Ereignis das fälschlicherweise als $\nu_{\mu}^{g e l}$ rekonstruiert wurde zählt in der $\nu_{\mu}^{\text {gel }}$ Klasse mit einem Gewicht größer 1, was den Effekt auswäscht.

Die Anzahl $N\left(\nu_{e}^{g e l}\right)_{\text {osz }}$ erwarteter $\nu_{e}^{g e l}$ Ereignisse mit Oszillationen, bei einer rekonstruierten Anzahl $N\left(\nu_{e}^{g e l}\right)_{\text {Sim }}$ von $\nu_{e}^{g e l}$ Ereignissen ohne Oszillationen, ist damit:

$$
\begin{aligned}
N\left(\nu_{e}^{g e l}\right)_{0 s z} & =\sum_{i=1}^{N\left(\nu_{e}^{g e l}\right) s_{i m}} G_{i}\left(\nu, \Delta m_{v a k}^{2}, \sin ^{2} 2 \vartheta_{v a k}\right) \\
\text { mit }: \quad \nu & =\nu_{e}, \bar{\nu}_{e}, \nu_{\mu}, \bar{\nu}_{\mu}
\end{aligned}
$$

Die Anzahl erwarteter Muonneutrino-Ereignisse $N\left(\nu_{\mu}^{g e l}\right)_{o s z}$ errechnet sich analog. Hieraus ergibt sich ein erwartetes Verhältnis $R_{0 \Omega z}=\frac{N\left(\nu_{\ell}^{g e l}\right)_{0.8}}{N\left(\nu_{\mu}^{g e l}\right)_{0 . s}}$ unter Berücksichtigung von Neutrino-Oszillationen als Funktion von $\left(\Delta m_{v a k}^{2}, \sin ^{2} 2 \vartheta_{\text {vak }}\right)$, hier: $\left(\Delta m_{e \mu}^{2}\right.$ und $\left.\sin ^{2} 2 \vartheta_{e \mu}\right)$.

Für $\nu_{\mu} \leftrightarrow \nu_{\tau}$ und $\nu_{e} \leftrightarrow \nu_{\tau}$ Oszillationen ist das Vorgehen prinzipiell gleich. Es gehen die Annahmen ein, daß:

$$
\Phi_{\nu_{\tau}}\left(\theta_{\nu}, E_{\nu}\right) \ll \Phi_{\nu_{\mu}}\left(\theta_{\nu}, E_{\nu}\right) \text { bzw. } \Phi_{\nu_{e}}\left(\theta_{\nu}, E_{\nu}\right)
$$

und das Tauonen im Fréjus-Detektor nicht gesehen werden. Summiert wird über das ganze simulierte Ereignissample mit den in (Kap. 6.3.2) gewählten Schnitten. Alle weiteren, in diesem Kapitel gemachten Aussagen beziehen sich damit auf dieses, über Energie- und Zenitwinkelspektrum gemittelte Verhältnis R.

8.3 Der Einfluß der Entstehungshöhe

Bei $\Delta m_{v a k}^{2} \approx 10^{-2} \mathrm{eV}^{2}$ ist die Entstehungshöhe des Neutrinos über der Erdoberfläche von Bedeutung, da sie in der Größenordnung der Oszillationslänge ist. Die Neutrinos entstehen nicht in einer festen Hōhe, sondern verteilt über die Dicke der Atmosphäre. Zur Vereinfachung, wurden Entstehungshöhen von zehn und zwanzig Kilometern gewählt. Die Weglängenverteilung, also die Verteilung des Abstandes des Entstehungsortes der Neutrinos vom Detektorort, bei einer Entstehungshöhe von 10 km zeigt (Abb. 37) für das gesamte simulierte Ereignissample.

Abbildung 37: Die Weglängenverteilung der generierten Neutrinos
Zur Demonstration sei für $\nu_{\mu} \leftrightarrow \nu_{\tau}$ Oszillationen das Verhältnis $R_{\text {Ooz }} / R_{S i m}$ als Funktion von $\Delta m_{\mu \tau}^{2}$ betrachtet (Abb. 38). Dieses Verhältnis, also der Quotient von "mit"/"ohne" Oszillationen ist ein Maß für die Stärke des Oszillationseffektes. Der Oszillationseffekt ist für 20 km Enstehungshöhe immer größer, da die Neutrinos mehr Zeit zur Oszillation haben, und die Differenz wird um so größer, je kleiner die Oszillationslänge ist. Da der Effekt jedoch im Bereich der Ausschlußgrenzen (Kap. 8.8) nur einige Prozent beträgt, wird auf eine genaue Simulation der Höhenverteilung verzichtet.

8.4 Der Einfluß der Flavorerkennung

Die Flavor wird nur mit der Genauigkeit der in (Kap. 6.5.1) angegebenen Matrix richtig bestimmt, dies führt dazu, daß der beobachtete Effekt kleiner ist als der theoretisch mögliche. Die (Abb. 39) veranschaulicht den Einfluß am Beispiel von $\nu_{e} \leftrightarrow \nu_{\mu}$ Oszillationen als Funktion von $\Delta m_{e \mu}^{2}$ bei konstanter Erddichte (Manteldichte). Mit einem Detektor, der in der Lage ist die Flavor zweifelsfrei zu bestimmen wäre der Effekt bei diesem Parametersatz maximal 7% stärker.

Abbildung 38: Der Einfluß der Entstehungshöhe bei $\nu_{\mu} \leftrightarrow \nu_{\tau}$ Oszillationen Die gestrichelte Linie zeigt den Oszillationseffekt bei einer Entstehungshöhe von 20 km , die durchgezogene bei 10 km .
Parameter: $\quad \sin ^{2} 2 \vartheta_{\mu \tau}=0.4$

Abbildung 39: Der Einfluß der Flavorerkennung bei $\nu_{e} \leftrightarrow \nu_{\mu}$ Oszillationen Die gestrichelte Linie zeigt den Oszillationseffekt falls man die Flavor immer richtig bestimmt, die durchgezogene den Effekt unter Verwendung der rekonstrujerten Flavor.
Parameter: $\sin ^{2} 2 \vartheta_{e \mu}=0.4$

8.5 Der Vergleich zwischen Materie- und VakuumOszillationen

Sind ν_{e} an der Oszillation beteiligt und fliegt das Neutrino durch die Erde, so finden Materie-Oszillationen statt-man hat nicht die Wahl diesen Vorgang als Vakuum-Oszillationen aufzufassen.

Trotzdem ist es interessant einen Vergleich zwischen Vakuum-Oszillationen und Materie-Oszillationen bei gleicher Energie- und Weglängenverteilung zu machen, um herauszufinden, ob die Materie die Oszillationen verstärkt oder unterdrückt.

Betrachtet wird für $\nu_{e} \leftrightarrow \nu_{\mu}$ Oszillationen das Verhältnis $R_{O_{s 2}} / R_{\text {Sim }}$ als Funktion von $\Delta m_{e \mu}^{2}$ bei verschiedenen Mischungswinkel (Abb. 40). Drei Fälle werden unterschieden:

- Alle Neutrinos durchfliegen nur Vakuum ($\mathrm{V}=0$)
- Die Erde ist eine homogene Kugel der "Manteldichte" (V $\approx 2 \cdot 10^{-13} \mathrm{eV}^{2}$)
- Die Erde ist eine homogene Kugel der "Kerndichte"
(Kerndichte $=$ Dichte entsprechend der Mitte des äußeren Kernplateaus $\mathrm{V} \approx 4.1 \cdot 10^{-13} \mathrm{eV}^{2}$)

Die Oszillationswahrscheinlichkeit beträgt:

$$
\begin{aligned}
P_{\nu_{e} \rightarrow \nu_{\mu}}^{\text {mat }} & =\sin ^{2} 2 \vartheta_{\text {mat }} \sin ^{2} \frac{\Delta m_{\text {mat }}^{2} x}{E_{\nu}} x \\
& =\underbrace{\frac{\sin ^{2} 2 \vartheta_{v a k}}{\left(\cos 2 \vartheta_{v a k}-\frac{2 E_{\nu}}{\Delta m_{v a k}^{2}} V\right)^{2}}+\sin ^{2} 2 \vartheta_{v a k} \frac{\Delta m_{\text {mat }}^{2} x}{4 E_{\nu}} x}_{(*)}
\end{aligned}
$$

Der Zusammenhang zwischen Materie- und Vakuumparameter wurde in (Kap. 2.2.2) aufgezeigt, die Vakuumparameter sind in diesem Fall $\Delta m_{e \mu}^{2}$ und $\sin ^{2} 2 \vartheta_{e \mu}$. Für $\Delta m_{e \mu}^{2} \leq 2 \cdot 10^{-3} \mathrm{eV}^{2}$ sind für große Mischungswinkel (Abb. 40 a,b) die Oszillationen durch die Materie im Vergleich zum Vakuum stark unterdrückt und zwar um so stärker, je dichter die Materie ist ($\cos 2 \vartheta_{e \mu} \ll$ $\left.\frac{2 E_{V} V}{\Delta m_{e \mu}^{2}}\right)$.

Abbildung 40: Der Vergleich zwischen Vakuum-Oszillationen und Mate-rie-Oszillationen konstanter Dichte bei 10 km Entstehungshöhe.
a) $\left.\left.\sin ^{2} 2 \vartheta_{e \mu}=1.0 \mathrm{~b}\right) \sin ^{2} 2 \vartheta_{e \mu}=0.8 \mathrm{c}\right) \sin ^{2} 2 v_{e \mu}=0.6$
d) $\sin ^{2} 2 \vartheta_{e \mu}=0.4$ e) $\sin ^{2} 2 v_{e \mu}=0.2$ f) $\sin ^{2} 2 v_{\epsilon \mu}=0.1$

Wird der Mischungwinkel kleiner dann nimmt der Vakuum-Oszillationseffekt stärker ab als die Materie-Oszillationen. Je kleiner der Mischungswinkel um so früher schneiden sich die Vakuum-Oszillationskurven und die Kurven für Materie-Oszillationen (Abb. $40 \mathrm{c}, \mathrm{d}$).

Der maximale Materieeffekt bei kleinen Mischungswinkeln $\left(\sin ^{2} 2 \vartheta_{e \mu} \leq\right.$ $0.2)$ liegt für die dichtere Materie bei größeren $\Delta m_{e \mu}^{2}$ (Abb. $40 \mathrm{e}, \mathrm{f}$).

Für große $\Delta m_{e \mu}^{2}$ ist der Effekt für Vakuum-Oszillationen und MaterieOszillationen etwa gleich, da $\left(\cos 2 \vartheta_{e \mu} \gg \frac{2 E_{\nu} V}{\Delta m_{e \mu}^{2}}\right.$) und deswegen $\Delta m_{e \mu}^{2} \approx \Delta m_{\text {mat }}^{2}$ und $\sin ^{2} 2 \vartheta_{e \mu} \approx \sin ^{2} 2 \vartheta_{\text {mat }}$ ist.
(Bsp. $\mathrm{E}=1 \mathrm{GeV}, \mathrm{V}=2 \cdot 10^{-13} \mathrm{eV}^{2}, \Delta m_{e \mu}^{2}=10^{-2} \mathrm{eV}^{2}, \sin ^{2} 2 \vartheta_{e \mu}=0.4 \Longrightarrow$ $\Delta m_{\text {mat }}^{2}=0.985 \cdot 10^{-2} \mathrm{eV}^{2}, \sin ^{2} 2 \vartheta_{\text {mat }}=0.413$)

Wegen der geringen Oszillationslänge mißt man, für große $\Delta m_{e \mu}^{2}$, in dem wegabhängigen Teil den Mittelwert der Sinusfunktion, also als Oszillationsamplitude $P\left(\theta_{\nu}, E_{\nu}, \Delta m_{e \mu}^{2}, \sin ^{2} 2 \vartheta_{e \mu}\right)=P\left(\sin ^{2} 2 \vartheta_{e \mu}\right)=\frac{1}{2} \cdot \sin ^{2} 2 \vartheta_{e \mu}$.

8.6 Der Einfluß des Dichtemodells der Erde

Auf der Basis der Oszillationswahrscheinlichkeit ist das Modell der konstanten Dichte im Bereich der Resonanzen nur für einen eingeschränkten Zenitwinkelbereich eine akzeptable Näherung an das detaillierte Erdmodell. Wie sieht es nun nach der Summation über das Energie- und Winkelspektrum (Abb. 41) aus?

Abbildung 41: Der Vergleich der Materie-Oszillationen bei konstanter Dichte (Manteldichte) und variabler Dichte für verschiedene Mischungswinkel bei 10 km Entstehungshöhe.
Parameter:
a) $\sin ^{2} 2 \vartheta_{e \mu}=0.3$
b) $\sin ^{2} 2 \vartheta_{e \mu}=0.4$

Für den Bereich ($\Delta m_{e \mu}^{2} \leq 5 \cdot 10^{-4} \mathrm{eV}^{2}$) ist der Effekt bei variabler Dichte, im Bereich $\left(5 \cdot 10^{-4} \leq \Delta m_{e \mu}^{2} \leq 2 \cdot 10^{-2}\right) \mathrm{eV}^{2}$ ist der Effekt bei der Approximation konstanter Dichte stärker.

Abbildung 42: Die Abhängigkeit des Oszillationseffektes bei festem $\Delta m_{e \mu}^{2}$ vom Mischungswinkel bei 20 km Entstehungshöhe.
Die Vergleichskurve ist die Erwartung, falls das primäre Flußverhältnis $\frac{\Phi \nu_{e}}{\Phi \nu_{\mu}}=0.5$ ist, die Flavor immer richtig erkannt wird, und eine Oszillationswahrscheinlichkeit von $P=\frac{1}{2} \cdot \sin ^{2} 2 v_{e \mu}$ gemessen wird, also eine Abschätzung des Maximaleffektes.
a) Die Variation bei kleinen $\Delta m_{e \mu}^{2}$

Parameter: $\Delta m_{e \mu}^{2}=10^{-4} \mathrm{eV}^{2} \Delta m_{e \mu}^{2}=10^{-3} \mathrm{eV}^{2}$
b) Die Variation bei großen $\Delta m_{e \mu}^{2}$

Parameter: $\Delta m_{e \mu}^{2}=10^{-2} \mathrm{eV}^{2} \Delta m_{e \mu}^{2}=10^{-1} \mathrm{eV}^{2} \Delta m_{e \mu}^{2}=1 \mathrm{eV}^{2}$
Um die Auswirkungen dieser Unterschiede auf die Ausschließungsgrenzen beurteilen zu können, muß die Variation des Verhältnisses $R_{O_{s z}} / R_{\text {Sim }}$ mit dem Mischungswinkel bei festem $\Delta m_{e \mu}^{2}$ untersucht werden. Sie ist in den oben erwähnten Bereichen unterschiedlich. Bei kleinen $\Delta m_{e \mu}^{2}$ ist die Variation sehr schwach (Abb. 42 a), während für $\Delta m_{e \mu}^{2}>10^{-2} \mathrm{eV}^{2}$ der Oszillationseffekt mit steigendem Mischungswinkel stark anwächst (Abb. 42 b). Zur Kompensation einer Abweichung zwischen den Modellen im Quotienten $R_{0 s z} / R_{\text {Sim }}$ sind also bei kleinen $\Delta m_{e \mu}^{2}$ größere Verschiebungen im Mischungswinkel nötig als bei großen $\Delta m_{e \mu}^{2}$.

Die Auswirkung dieser Tatsache auf den Verlauf der Ausschließungsgrenzen wird in (Kap. 8.7) diskutiert.

Die Folgerung aus dieser Untersuchung ist:
Oberhalb von $\Delta m_{e \mu}^{2}=6 \cdot 10^{-2} \mathrm{eV}^{2}$ wird zur Erlangung der Ausschlußgrenzen für $\nu_{e} \leftrightarrow \nu_{\mu}$ Oszillationen die Erde als homogene Kugel der Manteldichte betrachtet, unterhalb findet das detaillierte Erdmodell Anwendung. Die Grenzen werden dadurch zwar nur unwesentlich beeinflußt, jedoch soll hier, da dies nicht a priori offensichtlich ist (Kap. 8.1), der möglichst exakten Berücksichtigung der Erde der Vorzug vor der Approximation gegeben werden. Bei $\nu_{e} \leftrightarrow \nu_{\tau}$ Oszillationen findet, da die Ausschließungsmöglichkeiten sehr begrenzt sind, zur Vereinfachung nur das Modell konstanter Dichte Anwendung.

8.7 Die Erlangung der Ausschlußgrenzen

Da das gemessene Verhältnis $R_{F r}$ des Experimentes und das der Simulation $R_{\text {Sim }}$ miteinander verträglich sind, kann das Ziel nur sein die Parameterbereiche ($\Delta m_{v a k}^{2}, \sin ^{2} 2 \vartheta_{v a k}$) zu ermitteln, die $z u$ einem Verhältnis $R_{O s z}$ führen, bei dem die Erwartung und die Messung nicht mehr vereinbar sind.

Die $\nu_{\mu} \leftrightarrow \nu_{\tau}$ und $\nu_{e} \leftrightarrow \nu_{\mu}$ Oszillationen erhöhen das Verhältnis R, während $\nu_{e} \leftrightarrow \nu_{\tau}$ Oszillationen es erniedrigen.

Es werden alle Parameter mit einer Verläßlichkeit von CL verworfen die zu einer Erwartung führen, bei der Meßwerte kleiner als der Wert des FréjusExperimentes eine Wahrscheinlichkeit $W \leq(1-C L)$ hätten ($C L=0.9,0.95$).

Der statistische Fehler, der auf 1.56 kty normierten Erwartung (Tab. 9) und die systematischen Fehler der Simulation werden quadratisch addiert und ergeben den Fehler der Erwartung.

Die systematischen Fehler des Verhältnisses $R_{S i m}$ bestehen in der Unsicherheit der Flußvorhersage [9], der ungenauen Kenntnis der Triggerwahrscheinlichkeit für $\nu_{e}^{g e l}$ Ereignisse und den Unzulänglichkeiten der Analyse (vornehmlich in der nicht hundertprozentigen Flavorerkennung).
Der Fehler der Erwartung setzt sich wie folgt zusammen:

$$
\begin{aligned}
\sigma(R) & =\sqrt{\left(\sigma_{\text {stat }}(R)\right)^{2}+\left(\sigma_{s y s}\right)^{2}} \\
\sigma_{\text {stat }} & =\sqrt{\frac{R_{O_{s z}}\left(1+R_{\text {Osz }}\right)^{2}}{N_{\text {get }}}} \\
\sigma_{\text {syo }} & =\sqrt{\left(\sigma_{\text {Fluss }}\right)^{2}+\left(\sigma_{\text {Trigger }}\right)^{2}+\left(\sigma_{\text {Analyse }}\right)^{2}} \\
& =\sqrt{(0.03)^{2}+(0.06)^{2}+(0.045)^{2}}
\end{aligned}
$$

Es werden jeweils einseitige Tests durchgeführt. Die Grenzwerte sind dann die Lösungen der Gleichungen:

$$
\left.\begin{array}{l}
\nu_{e} \leftrightarrow \nu_{\mu} \\
\nu_{\mu} \leftrightarrow \nu_{\tau} \\
\nu_{e} \leftrightarrow \nu_{\tau}
\end{array}\right\} \begin{aligned}
& R_{O \& z}-R_{F r}=1.3(1.65) \sigma\left(R_{O \Omega z}\right) \quad, 90(95) \% \text { confidence level } \\
& R_{F r}-R_{O s z}=1.3(1.65) \sigma\left(R_{O \Omega z}\right), 90(95) \% \text { confidence level }
\end{aligned}
$$

Es ergeben sich die folgenden Grenzwerte:

$$
\left.\begin{array}{lll}
\nu_{e} \leftrightarrow \nu_{\mu} \\
\nu_{e} \leftrightarrow \nu_{\tau}
\end{array}\right\} \quad \begin{aligned}
& R_{O s z}=0.73(0.78), 90(95) \% \text { confidence level } \\
& R_{O s=}=0.42(0.39) \quad, 90(95) \% \text { confidence level }
\end{aligned}
$$

Die Oszillationsparameter werden so lange variiert, bis das Verhältnis der Simulation mit Berücksichtigung der Oszillationen $R_{O, z}$ diese Grenzwerte erreicht. Die von dieser Analyse favorisierten Ausschließungsgrenzen sind in (Abb. $43 \mathrm{a}, 43 \mathrm{~b}, 44$) dargestellt. Die Gebiete rechts der Kurvenverläufe werden mit der entsprechenden Verläßlichkeit ausgeschlossen. Auf die Variationen dieser Kurven durch Unsicherheiten der Analyse geht das nächste Kapitel (Kap 8.8) ein.

Abbildung 43: Die Ausschließungskurven dieser Analyse bei 10 km Entstehungshöhe
a) $\nu_{e} \leftrightarrow \nu_{\mu}$ Oszillationen
b) $\nu_{\mu} \leftrightarrow \nu_{\tau}$ Oszillationen

Abbildung 44: Die Ausschließungskurven dieser Analyse für $\nu_{e} \leftrightarrow \nu_{\tau}$ Oszillationen bei 10 km Entstehungshöhe

- Die Ausschließungskurven für 90% und 95% confidence level verlaufen bei $\nu_{e} \leftrightarrow \nu_{\mu}$ Oszillationen im Bereich $\Delta m_{e \mu}^{2}>10^{-2} \mathrm{eV}^{2}$ fast parallel, was den Verlauf der Kurven aus (Abb. 42 b) widerspiegelt.
- Bei kleinen $\Delta m_{e \mu}^{2}$ ist die Variation des Oszillationseffektes mit dem Mischungswinkel schwach (Abb. 42 a), deswegen liegen die Ausschließungskurven weiter auseinander.
- Beim Vergleich von $\nu_{e} \leftrightarrow \nu_{\mu}$ und $\nu_{\mu} \leftrightarrow \nu_{\tau}$ Oszillationen erkennt man den Einfluß der Materie, der für $\Delta m_{e, \mu}^{2} \leq 10^{-2} \in V^{-2}$ zu einer Ausbeulung im Vergleich zu den $\nu_{\mu} \leftrightarrow \nu_{\tau}$ Vakuum-Oszillationen führt.
- Bei großen $\Delta m_{v a k}^{2}$ ist der Effekt wegen der geringen Oszillationslänge im wesentlichen durch die Ereigniszahlen bestimmt, denn $P\left(\sin ^{2} 2 \vartheta_{v a k}\right) \approx$ $\frac{1}{2} \cdot \sin ^{2} 2 \vartheta_{v a k}$.

Die Anzahlen der Neutrinos der generierten Flavor ($\nu_{e}, \bar{\nu}_{e}, \nu_{\mu}, \bar{\nu}_{\mu}$) für die Fréjus-Luminosität von $1.56 \mathrm{kty} \operatorname{sind}(69.3,18.8,101.2,26.3)$. Darum ist der Effekt bei großen $\Delta m_{v a k}^{2}$ für $\nu_{e} \leftrightarrow \nu_{\mu}$ größer als für $\nu_{\mu} \leftrightarrow \nu_{\tau}$ Oszillationen, denn bei $\nu_{e} \leftrightarrow \nu_{\mu}$ Oszillationen tragen sowohl die ν_{e} als auch die ν_{μ} zum Effekt bei.

- Wegen der geringeren Anzahl der Elektronneutrinos im Verhältnis zu den Muonneutrinos, aber vor allem weil das Verhältnis $R_{\text {Sim }}$ ohne Oszillationen größer ist als das Verhältnis $R_{F r}$, also ein viel stärkerer Oszillationseffekt nötig ist um das Verhältnis $R_{O s z}$ unter den Grenzwert zu drücken, sind die Ausschlußmöglichkeiten bei $\nu_{e} \leftrightarrow \nu_{\tau}$ Oszillationen (Abb. 44) sehr begrenzt.

8.8 Die Variation der Ausschlußgrenzen

Um ein Gefühl für die systematischen Unsicherheiten der Ausschlußgrenzen zu erlangen soll untersucht werden, wie die Grenzen von der Triggerwahrscheinlichkeit, der Entstehungshöhe, dem Erdmodell und dem statistischen Auswerteverfahren abhängen.

- In der Fréjus-Kollaboration existieren mehrere Modelle zur Beschreibung der elektromagnetischen Schauer im Fréjus-Detektor die zu einer unterschiedlichen Gestalt der Schauer führen. Da die Triggerwahrscheinlichkeit der $\nu_{e}^{g e l}$ Reaktionen jedoch von der Schauergestalt abhängt hat dies Auswirkungen auf das Verhältnis $R_{\text {Sim }}$ auf das die auf obenstehende Weise erlangten Ausschlußgrenzen sehr sensitiv sind. Der Einfluß ist sehr komplex, da die Triggerwahrscheinlichkeit eine mit der Neutrino-Energie stark ansteigende Funktion ist, die mit dem steil abfallenden Neutrinofluß gefaltet wird. Verändert man die Triggerkurve derart, daß das Verhältnis $R_{\text {Sim }}$ die Werte ($0.57 / 0.61 / 0.65$) annimmt (Abb. 45), so ergeben sich stark unterschiedliche Verläufe der Ausschlußgrenzen.
- Die Abhängigkeit von der Entstehungshöhe ist schwach (Abb. 46).
- Ein Unterschied 2 wischen dem Modell der variablen Dichte und der Approximation durch die Manteldichte ist nur im Bereich $\Delta m_{e \mu}^{2} \leq 10^{-2} \mathrm{eV}^{2}$ sichtbar (Abb. 47). Dort sind die Grenzen mit dem detaillierten Erdmodell etwas schwächer. Im Interval $10^{-2} \mathrm{eV}^{2} \leq \Delta m_{e \mu}^{2} \leq 6 \cdot 10^{-2} \mathrm{eV}^{2}$ verlaufen die Kurven fast identisch (vergleiche auch (Abb. 41)). Für $\Delta m_{e \mu}^{2}>6 \cdot 10^{-2} \mathrm{eV}^{2}$ wurde deswegen auf eine genaue Simulation mit variabler Dichte verzichtet.

Abbildung 45: Die Abhängigkeit der Ausschließungskurven von der Triggerkurve für das Modell der Manteldichte bei 20 km Entstehungshöhe.
a) und b) $\nu_{\mu} \leftrightarrow \nu_{\tau}$ Oszillationen
c) und d) $\nu_{e} \leftrightarrow \nu_{\mu}$ Oszillationen

Abbildung 46: Die Abhängigkeit der Ausschließungskurven von der Entstehungshöhe, für 95% confidence level
a) $\nu_{\mu} \mapsto \nu_{\tau}$ Oszillationen
b) $\nu_{e} \leftrightarrow \nu_{\mu}$ Oszillationen (Manteldichte)

Abbildung 47: Die Abhängigkeit der $\nu_{e} \leftrightarrow \nu_{\mu}$ Ausschließungskurven vom Erdmodell bei variabler Dichte (variabel) und Manteldichte (const) für 10 km Entstehungshöhe
a) 90% confidence level
b) 95% confidence level

Das in (Kap. 8.7) vorgestellte Verfahren zur Erlangung der Ausschlußgrenzen ist unabhängig vom Verhältnis $R_{\text {Sim }}$. Die Unterschiede in den Ausschließungskurven (Abb. 45) resultieren also aus der verschieden großen Diskrepanz zwischen der Simulation ohne Oszillationen und dem Experiment. Je größer das Verhältnis $R_{\text {Sim }}$, desdo weniger Oszillationseffekt ist nötig um den Grenzwert zu erreichen. Um diese Ahängigkeit zu kompensieren wird für $\nu_{e} \leftrightarrow \nu_{\mu}$ und $\nu_{\mu} \leftrightarrow \nu_{\tau}$ Oszillationen ein weiteres Verfahren [41] benutzt, das auf einer Renormalisierung, abhängig von $R_{\text {Sim }}$, beruht.

Der Fehler der Erwartung $R_{\text {sim }}$ wird gaußisch um den experimentellen Wert $R_{F_{r}}$ angenommen. Die Fläche unter der Kurve in den Grenzen ($R_{\text {Sim }}$, $R_{0 \& s}{ }^{\text {max }}$), also der durch die Simulation festgelegte "physikalische" Bereich, wird auf eins normiert.
$R_{\text {Osz }}{ }^{\text {max }}$ ist der Wert bei maximalem Oszillationseffekt. ($R_{\text {Osz }}{ }^{\text {max }} \approx 1.0-$ 1.15, abhängig von der Triggerkurve) Dieser Wert ist unkritisch, da wegen der steil abfallenden Gaußurve die Fläche oberhalb von $R=1$ verschwindend gering ist.

Danach werden die Werte $R_{0 _z}$ ermittelt, für die die Flächen in den Grenzen ($R_{\text {Sim }}, R_{\text {Osz }}$) $0.9 \cong 90 \%$ confidence level, bzw. $0.95 \cong 95 \%$ confidence level betragen. Die Grenzen für die verschiedenen Werte von $R_{\text {Sim }}$ sind für $\nu_{e} \leftrightarrow \nu_{\mu}$ und $\nu_{\mu} \leftrightarrow \nu_{\tau}$ Oszillationen in (Tab. 10) aufgeführt. Eine teilweise Kompensation findet statt (Abb. 48), vornehmlich im Bereich kleiner $\Delta m_{v a k}^{2}$ (Abb. 45). Die stärksten Ausschlußkurven erhält man aber weiterhin für $R_{S i m}=0.65$.

$R_{\text {Sim }}$	$R_{\text {O\&z }}$ 90% conf. level	$R_{O \boldsymbol{z}}$ 95% conf. level
0.57	0.76	0.80
0.61	0.78	0.82
0.65	0.80	0.83

Tabelle 10: Die Grenzwerte der Ausschließungskurven unter Benutzung des Renormalisierungsverfahrens für $\nu_{e} \leftrightarrow \nu_{\mu}$ und $\nu_{\mu} \leftrightarrow \nu_{\tau}$ Oszillationen

Abbildung 48: Die Abhängigkeit der Ausschließungskurven vom statistichen Auswerteverfahren für das Modell der Manteldichte bei 20 km Entstehungshöhe.
a) und b) $\nu_{\mu} \mapsto \nu_{\tau}$ Oszillationen
c) und d) $\nu_{e} \leftrightarrow \nu_{\mu}$ Oszillationen

8.9 Der Vergleich mit anderen Experimenten

Untersuchungen zu Neutrino-Oszillationen wurden mit Experimenten an Beschleunigern (Cern, Brookhaven, Los Alamos...), Kernreaktoren (Gösgen, Bugey,...) und Untertage-Detektoren (Kamiokande, Fréjus, IMB...) durchgeführt.

Zuerst werden die durch die verschiedenen Methoden zugänglichen Parameterbereiche ($\Delta m_{v a k}^{2}, \sin ^{2} 2 \vartheta_{v a k}$) diskutiert. Der Vergleich zwischen Beschleu-niger- und Kernreaktor-Experimenten auf der einen Seite und UntertageDetektoren auf der anderen schließt sich an. Danach folgt die Diskussion der Messungen an Untertage-Detektoren. Den Abschluß bilden einige Bemerkungen zum Sonnen-Neutrino-Rätsel.

Da die untersuchbaren Massendifferenzen an das Energiespektrum der Neutrinos und den Abstand zwischen Neutrino-Quelle und Detektor gebunden sind, können Experimente an Kernreaktoren und Beschleunigern nur Massendifferenzen $\Delta m_{v a k}^{2}>10^{-2} \mathrm{eV}^{2}$ testen.

Den Stand der Dinge auf dem Gebiet der Beschleuniger- und KernreaktorExperimente zeigt (Abb. 49).

Zwei Experimente (PS-191 [43], Bugey [44]) haben ein positives Signal für Neutrino-Oszillationen gemessen. Die zur Erklärung der Messung benötigten Parameterbereiche sind jedoch durch andere Experimente BEBC [45], Gösgen [46] ausgeschlossen worden.

Untertage-Detektoren untersuchen Massendifferenzen bis hinunter zu ca. $10^{-5} \mathrm{eV}^{2}[47]$. Die Messung mit ihnen liefern also im Vergleich zu Beschleunigern und Kernreaktoren Ergebnisse in einem neuen Parameterbereich. Der Gewinn in der Massendifferenz (Abb. 49) beträgt fast drei Größenordnungen.

Im Bereich großer $\Delta m_{\text {vak }}^{2}$, (Bei verschiedenen Energiespektren ist dies natürlich ein anderer Bereich im absoluten Wert von $\Delta m_{v a k}^{2}$) ist die Oszillationslänge klein im Verhältnis zur beobachteten Wegstrecke der Neutrinos und damit $\mathrm{P}\left(\sin ^{2} 2 \vartheta_{v a k}\right)=\frac{1}{2} \cdot \sin ^{2} 2 \vartheta_{v a k}$.

Die erreichbaren Ausschlußgrenzen sind dann im wesentlichen durch die Ereignisraten bestimmt und verlaufen bei fast konstantem $\sin ^{2} 2 \vartheta_{\text {vak }}$. Hoch-statistik-Experimente an Beschleunigern und Kernreaktoren erreichen deswegen Ausschlußgrenzen bei sehr viel kleineren Werten von $\sin ^{2} 2 \vartheta_{\text {vak }}$ als Messungen an Untertage-Detektoren.

Abbildung 49: Die Einschränkungen der Oszillationsparameter (90% conf. level) durch Messungen an Beschleunigern und Kernreaktoren
Diese Abbildungen [42] wurden um die Ausschließungskurven (Abb. 43a, 43b) dieser Analyse des Fréjus-Experimentes (Fr) erweitert.
a) $\nu_{e} \leftrightarrow \nu_{\mu}, \nu_{e} \leftrightarrow \nu_{\tau}$, und $\bar{\nu}_{e} \leftrightarrow \nu_{x}$ Oszillationen

BNL [48], CHARM [49], BEBC [45], PS-191 [43], Los Alamos [50], E531 [51], Gösgen [46], Bugey [44]
b) $\nu_{\mu} \leftrightarrow \nu_{\tau}$ und $\nu_{\mu} \leftrightarrow \nu_{x}$ Oszillationen

CCFR [52], CDHS [53], IMB [47]

Auch bei den Messungen mit Untertage-Detektoren zeigt sich kein einheitliches Bild (Abb. 50).

Die Ergebnisse des Fréjus-Experimentes und die der Kamiokande Kollaboration bezüglich $\nu_{e} \leftrightarrow \nu_{\mu}$ und $\nu_{\mu} \leftrightarrow \nu_{\tau}$ Oszillationen sind in ihrer Stoßrichtung unterschiedlich. Während das Ergebnis des Fréjus-Experimentes, wie auch die Messung der IMB-Kollaboration [47], mit dem Modell atmosphärischer Neutrinos zufriedenstellend erklärbar ist, ist die Messung des Kamio-kande-Detektors mit der Existenz von Neutrino-Oszillationen verträglich. Die beste Anpassung der Kamiokande-Messung an die Simulation mit NeutrinoOszillationen liefert ($\Delta m_{e \mu}^{2}=1.2 \cdot 10^{-2} \mathrm{eV}^{2}, \sin ^{2} 2 \vartheta_{e \mu}=0.75$) und ($\Delta m_{\mu \tau}^{2}=$ $1.0 \cdot 10^{-2} \mathrm{eV}^{2}, \sin ^{2} 2 \vartheta_{\mu \tau}=0.69$) [38].

Daraus ergeben sich durch den Fréjus-Detektor und den IMB-Detektor, ausgeschlossene Gebiete, und durch den Kamiokande-Detektor erlaubte.

Die zugelassenen bzw. ausgeschlossenen Gebiete sind nicht im Widerspruch zueinander, jedoch ist der Raum zur Erklärung der Kamiokande-Messung auf dem Niveau der 90% confidence level Kurven klein geworden.

Der Parameterbereich in $\Delta m_{\text {vak }}^{2}$, der zur Lösung des Sonnen-NeutrinoRätsels untersucht werden muß $[15,54]$, ist $10^{-8} \mathrm{eV}^{2} \leq \Delta m_{\text {vah }}^{2} \leq 10^{-4} \mathrm{eV}^{2}$. Mit der Messung des Fréjus-Detektors können also keine Aussagen zur Lösung des Sonnen-Neutrino-Rätsels gemacht werden.

Abbildung 50: Die Einschränkungen der Oszillationsparameter durch Messungen mit Untertage-Detektoren
Diese Abbildungen [38] wurden um die Ausschließungskurven (Abb. 43a, 43b) dieser Analyse des Fréjus-Experimentes (Fr) erweitert.
THIS EXP. \cong Kamiokande Resultat
Das Kreuz symbolisiert die beste Anpassung der Parameter an die Messung des Kamiokande-Detektors
a) $\nu_{e} \leftrightarrow \nu_{\mu}$ Oszillationen Gösgen [46]
b) $\nu_{\mu} \leftrightarrow \nu_{\tau}$ Oszillationen CDHSW [53]

8.10 Die Zusammenfassung

An dieser Stelle sei für die Eiligen, und für diejenigen die durch das Lesen der Arbeit verwirrt sind, die Quintessenz aufgeschrieben:

- Der mit dem Fréjus-Detektor gemessene Neutrinofluß ist in Übereinstimmung mit der Vorhersage aus dem Modell der Entwicklung atmosphärischer Schauer.
- Untertage-Detektoren wie der Fréjus-Detektor sind prinzipiell dazu geeignet mit ihnen Aussagen über Neutrino-Oszillationen zu treffen.
- Die Messung des Fréjus-Detektors erweitert die Ausschließungsgrenzen für Neutrino-Oszillationen im Vergleich zu Kernreaktoren und Beschleunigern um zwei Größenordnungen in $\Delta m_{v a k}^{2}$.
- Die Ausschließungswerte dieser Analyse für 95% confidence level (Abb. 43 a, $43 \mathrm{~b}, 44$) sind:

$$
\begin{array}{rlrl}
\nu_{e} \leftrightarrow \nu_{\mu} & \Delta m_{e \mu}^{2} & =4 \cdot 10^{-4} \mathrm{eV}^{2} & \\
& \text { maximale Mischung } \\
& \sin ^{2} 2 \vartheta_{e \mu} & =0.31 & \Delta m_{e \mu}^{2}=1 \mathrm{eV}^{2} \\
\nu_{\mu} \leftrightarrow \nu_{\tau} & \Delta m_{\mu \tau}^{2} & =2 \cdot 10^{-4} \mathrm{eV}^{2} & \\
& & \text { maximale Mischung } \\
& \sin ^{2} 2 \vartheta_{\mu \tau} & =0.40 & \Delta m_{\mu \tau}^{2}=1 \mathrm{eV}^{2} \\
\nu_{e} \leftrightarrow \nu_{\tau} & \Delta m_{e \tau}^{2} & =2 \cdot 10^{-2} \mathrm{eV}^{2} & \\
& & \text { maximale Mischung } \\
& \sin ^{2} 2 \vartheta_{e \tau} & =0.93 &
\end{array}
$$

- Trotz der niedrigen Ereigniszahlen sind die Ergebnisse fast ebenso stark durch systematische Unsicherheiten beeinflußt ($\sigma_{\text {gys }}=0.08, \sigma_{\text {stat }}=0.09$). Eine längere Laufzeit des Experimentes veränderte die Ergebnisse also nur geringfügig.
- Für die über Neutrino-Energie und Zenitwinkel gemittelte Größe R ist die Verwendung des Modelles der konstanten Erddichte völlig ausreichend.
- Der Einfluß der Entstehungshöhe auf die Ausschließungsgrenzen ist gering.
- Die Variationen der Ausschlußgrenzen durch die systematischen Unsicherheiten des Experimentes sind groß.

Die Frage nach der Existenz von Neutrino-Oszillationen ist also weiterhin offen. Die "Spielwiese", auf der sie stattfinden können, wird jedoch, auch durch die hier vorgestellte Analyse, immer kleiner.

Referenzen

[1] Wolfgang Pauli, Aufsätze und Vorträge über Physik und Erkenntnistheorie, Braunschweig (1961) abgedruckt in Physics Today 31 (Sep. 1987), 23
[2] F. Reines, C.L. Cowan Jr., Physical Review 92 (1953),830
[3] V.A. Lubimov et al., Physics Letters B159 (1985),217
[4] Review of Particle Properties, Physics Letters B204 (1988),138
[5] Davis et al., Physical Review Letters 20 (1968),1205
[6] J.N. Bahcall et al., Review Modern Physics 54 (1982),767
[7] T.K. Gaisser, Todor Stanev, Giles Barr, Physical Review D38 (1988),85
[8] Handbook of Chemistry and Physics, $69^{\text {th }}$ edition, F-160
[9] Stephen Barr, T.K. Gaisser, Paolo Lipari, Serap Tilav, Physics Letters B214 (1988),147
[10] L. Wolfenstein, Physical Review D17 (1978),2369
[11] H.A. Bethe, Physical Review Letters 56 (1986),1305
[12] S.P. Mikheev, A.Yu. Smirnov, Soviet Physics JETP 64 (1986),4
[13] Murray Gell-Mann, Piere Ramond, Richard Slansky, Supergravity, Hrsg. P. van Nieuwenhuizen und D.Z.Freedman, North-Holland Amsterdam 1979
[14] V. Barger, R.J.N. Barger, K. Whisnant, Physical Review D34 (1986),980
[15] A. Dar, A. Mann, Y. Melina, D. Zajfman, Physical Review D35 (1987),3607
[16] Dagmar Bruß, Diplomarbeit 1989, RWTH Aachen
[17] Holger Mönch, Diplomarbeit 1988, RWTH Aachen
[18] Peter Schleper, Diplomarbeit 1987, RWTH Aachen
[19] Ch. Berger et al., Nuclear Instruments and Methods A262 (1987),463-495
[20] Anton Hofmann ,Doktorarbeit RWTH Aachen, PITHA 87/02
[21] Ch.Berger et al., submitted to Phys. Rev. D
[22] Guy Deuzet, Doktorarbeit Paris-Sud Centre D'Orsay LAL 87-13 April 1987
[23] Olivier Perdereau, Doktorarbeit Paris-Sud Centre D'Orsay LAL 89-11 Mai 1989
[24] Von Gaisser zur Verfügung gestellter Datensatz (private Mitteilung)
[25] J.S. Bell, S.M. Berman, II Nuovo Cimento 25 (1962),404
[26] V. Barger R.J.N. Phillips, Quark-Parton Model Relations in Deep Inelastic Lepton Scattering, Nuclear Physics B73 (1974),269-294
[27] J. Blietschau et al., Nuclear Physics B118 (1977),218-236
[28] Hans Jürgen Daum, Frejus Meeting 1986
[29] K. Nakai et al., Measurements of Cross Sections for Pion Absorption by Nuclei, Physical Review Letters Volume 44, Nr. 22 (1980),1446
[30] D. Ashery et al., True Absorption and Scattering of Pions on Nuclei, Physical Review C Volume 23, Nr. 5 (1981),2173
[31] R.D. McKeown et al., Inclusive Reactions of Pions on Nuclei, Physical Review C Volume 24, Nr. 1 (1981),211
[32] Harm Fesefeldt, The Simulation of Hadronic Showers-Physics and Applications, RWTH Aachen PITHA 85/02 (1985)
[33] Bert Voigtländer, Diplomarbeit 1985, RWTH Aachen
[34] Jörg Tutas, Diplomarbeit 1985, RWTH Aachen
[35] Matthias Fröhlich, Diplomarbeit 1989, RWTH Aachen (in Vorbereitung)
[36] Hans Jürgen Daum, Frejus Meeting 1989
[37] H. Hirata et al., Physics Letters B205 (1988),416
[38] Masato Takita, Doktorarbeit Universität Tokyo (1988)
[39] Frank D. Stacey, Physics of the Earth, Wiley and Son, New York 1977
[40] Eric D. Carlson, Physicl Review D34 (1986),1454
[41] Review of Particle Properties, Physics Letters B204 (1988),80
[42] R. Eichler, Proceedings of the 1987 International Symposium on Lepton and Photon Interactions, Nuclear Physics B (proc. Suppl. 3) (1988), 389
[43] G. Bernardi et al., Physics Letters B181 (1986), 173
[44] J.F. Cavaignac et al., Physics Letters B148 (1984), 387
[45] C. Angelini et al., Physics Letters B179 (1986), 307
[46] G. Zacek et al., Physical Review D34 (1986), 2621
[47] J.M. Losecco et al., Physics Letters B184 (1987), 305
[48] L.A. Ahrens et al., Physical Review D31 (1985), 2732
[49] F. Bergsma et al., Physics Letters B142 (1984), 103
[50] T. Dombeck et al., Physics Letters B194 (1987), 591
[51] Ushida et al., Physical Review Letters 57 (1986), 2898
[52] I.E. Stockdale et al., Physical Review Letters 52 (1984), 1384
[53] F. Dydak et al., Physics Letters B134 (1984), 281
[54] J.N. Bahcall, W.C. Haxton, Physical Review D40 (1989), 931

Verzeichnis der Abbildungen

1 Die Lepton-Dubletts der schwachen Wechselwirkung 3
2 Die Zerfallskette der Pionen 7
3 Die Darstellung der Flavoreigenzustände ν_{e} und ν_{μ} als Mischung der Masseneigenzustände ν_{1} und ν_{2} 10
4 Das Laboratorium im Fréjus-Straßentunnel 14
5 Der Aufbau des Fréjus-Detektors 15
6 Ein durchgehendes Muon mit Bremsstrahlungsschauer 19
7 Ein Mehrfachmuonen Ereignis 20
8 Eine ν_{e} Reaktion des geladenen Stromes 23
9 Eine ν_{μ} Reaktion des geladenen Stromes 24
10 Eine ν Reaktion des neutralen Stromes 25
11 Der totale Wirkungsquerschnitt der ν_{μ} Reaktionen des gela- denen Stromes 30
12 Der mittlere Viererimpulsübertrag $\left\langle Q^{2}\right\rangle$ der ν_{μ} Reaktionen des geladenen Stromes 31
13 Die Spektren der atmosphärischen Neutrinos 32
14 Der Einfluß der Wechselwirkungen im Mutterkern 34
15 Die Triggerwahrscheinlichkeit der Reaktionen des Geladenen Stro- mes 36
16 Die Triggerwahrscheinlichkeit der Reaktionen des Neutralen Stro- mes als Funktion der Neutrino-Energie 37
17 Die Erkennungswahrscheinlichkeit der Pionen und Protonen als Spuren 40
18 Die Richtungsrekonstruktion der Einzelstrukturen 44
19 Der Vergleich \mathbf{z} wischen Handvermessung und automatischer Re- konstruktion 47
20 Der Vergleich der sichtbaren Neutrinogrößen der Handvermes- sung mit der automatischen Rekonstruktion und der Simulation 48
21 Das Containment der Reaktionen des geladenen Stromes 50
22 Ein stoppendes oder hinauslaufendes Muon 52
23 Die Verteilungen der Vertexkoordinaten der Fréjus-Ereignisse und der Simulation 54
24 Die Matrix der Flavorerkennung der automatischen Rekonstruk- tion 56
25 Die Energie- und Zenitwinkelabweichungen zwischen Rekonstruk- tion und Simulation 58
26 Die Energieauflösung 59
27 Die Zenitwinkelauflösung 60
28 Der Vergleich zwischen der Zenitwinkelauflösung und der Auflösung des Winkels im Raum 61
29 Die Multiplizitätsverteilungen der Fréjus-Daten und der Simu- lation 63
30 Die Verteilungen der sichtbaren Energie der Fréjus-Daten und der Simulation 65
31 Die Zenitwinkelverteilungen des sichtbaren Impulses der Fréjus- Daten und der Simulation 66
32 Die Potentialverteilung der Erde 70
33 Die Oszillationswahrscheinlichkeit als Funktion der Neutrino- Energie 71
34 Die Modifikation der Oszillationswahrscheinlichkeit bei Verände- rung des Mischungswinkels 72
35 Die Oszillationswahrscheinlichkeit als Funktion der Trajektorie durch die Erde 73
36 Der Vergleich der Modelle der Manteldichte und der variablen Dichte 74
37 Die Weglängenverteilung der generierten Neutrinos 77
38 Der Einfluß der Entstehungshöhe 78
39 Der Einfluß der Flavorerkennung 78
40 Der Vergleich zwischen Vakuum-Oszillationen und Materie-Oszilla- tionen bei konstanter Dichte 80
41 Der Vergleich der Materie-Oszillationen bei konstanter und va- riabler Dichte für verschiedene Mischungswinkel 82
42 Die Abhängigkeit des Oszillationseffektes bei festem $\Delta m_{e \mu}^{2}$ vom Mischungswinkel 83
43 Die Ausschließungskurven dieser Analyse für $\nu_{e} \leftrightarrow \nu_{\mu}$ und $\nu_{\mu} \leftrightarrow \nu_{\tau}$ Oszillationen 86
44 Die Ausschließungskurven dieser Analyse für $\nu_{e} \leftrightarrow \nu_{\tau}$ Oszilla- tionen 87
45 Die Abhängigkeit der Ausschließungskurven von der Triggerkurve 90
46 Die Abhängigkeit der Ausschließungskurven von der Entste- hungshöhe 91
47 Die Abhängigkeit der $\nu_{e} \leftrightarrow \nu_{\mu}$ Ausschließungskurven vom Erd- modell 92
48 Die Abhängigkeit der Ausschließungskurven vom statistichen Auswerteverfahren 94
49 Die Einschränkungen der Oszillationsparameter durch Messun- gen an Beschleunigern und Kernreaktoren 96
50 Die Einschränkungen der Oszillationsparameter durch Messun- gen mit Untertage-Detektoren 98

Verzeichnis der Tabellen

1 Die oberen Grenzen der Neutrinomassen
 4

2 Die wesentlichen Eigenschaften des Fréjus-Detektors 17
3 Die Geiger- und Flashkammern 17
4 Die Reaktionskanäle des ν_{μ} 28
5 Die Parameter der Neutrino Energiespektren 32
6 Die mittleren Triggerwahrscheinlichkeiten 37
7 Die mittleren Containmentwahrscheinlichkeiten 50
8 Die Ereigniszahlen der Simulation 55
9 Der Vergleich der Ereigniszahlen des Fréjus-Experiments mit der Simulation 62
10 Die Grenzwerte der Ausschließungskurven unter Benutzung des Renormalisierungsverahrens 93

Danksagung

Viele haben mir in vielfältiger Weise geholfen, die Thematik der NeutrinoOszillationen zu bearbeiten und die vorstehende Arbeit zu verfassen. Ihnen allen gilt mein herzlicher Dank.
Diejenigen, die mir auch ihren physikalischen Beistand gewährt haben, sollen hier genannt werden.

Danken möchte ich Herrn Professor Christoph Berger für die Themenstellung und die Betreuung dieser Arbeit. Besonders motivierend war seine persönliche Freude an der Thematik meiner Arbeit, und seine Fähigkeit, den Blick auf das Wesentliche zu lenken.
Durch die mühsame Kleinarbeit der Analyse begleitete mich am intensivsten Herr Holger Mönch, der oft Partner in fruchtbaren Diskussionen war; aber auch in langweiligen und langwierigen, dies vor allem sei ihm hoch angerechnet. Er hat durch seine Begabung, den Problemen ihren Anschein der Kompliziertheit zu nehmen, dazu beigetragen, mich zu ermutigen, sie anzugehen.
Viele Einsichten in die Problematik und die Geheimnisse der NeutrinoOszillationen verdanke ich den Diskussionen mit Frau Dagmar Bruß, meiner Beraterin in theoretischen Fragestellungen.
Der Blick fürs Detail und seine stete Bereitschaft, sich meiner Fragen anzunehmen, zeichnete Herrn Matthias Fröhlich aus.

Neben diesen Personen haben Frau Erika Raupach, Herr Frank Raupach, Herr Peter Schleper und Herr Jörg Schult, jeweils auf der ihnen eigenen Art und Weise ihr Scherflein zur Anfertigung dieser Arbeit beigetragen.

Lebenslauf

Am 20.07.1961 reihte ich mich als drittes von vier Kindern meiner Eltern, Käthe Nisius, geb. Holzapfel und Aloys Nisius unter die Erdenbürger ein, und erhöhte damit die Einwohnerzahl Aachens um eins.
Meine ersten Kontakte mit den Institutionen des Bildungssystems knüpfte ich im Sommer des Jahres 1967 mit dem Eintritt in die katholische Volksschule Franzstraße in Aachen, der ich vier Jahre treu blieb. Kaum dreizehn Jahre später verließ ich mit dem Zeugnis der Reife das Couven-Gymnasium zu Aachen.
Vom 01.07 .1980 bis 30.06 .1982 war ich Angehöriger der Bundeswehr.
Ab dem Wintersemester 1982 entdeckte ich viele Rätsel der Physik und einige ihrer Lösungen durch das Studium an der RWTH Aachen mit dem Ziel, Diplom-Physiker zu werden. Auf dem Weg dorthin legte ich im Frühjahr 1985 die Vordiplomprüfungen ab.

