
PITHA 94 / 21

Juni 1994

Measurement

of the strong coupling constant �

s

from jet rates

in deep inelastic scattering

by

Richard Nisius

PHYSIKALISCHE INSTITUTE

RWTH AACHEN

Sommerfeldstr.

52056 AACHEN, GERMANY





Measurement

of the strong coupling constant �

s

from jet rates

in deep inelastic scattering

Von der Mathematisch{ Naturwissenschaftlichen Fakult�at

der Rheinisch{ Westf�alischen Technischen Hochschule Aachen

genehmigte Dissertation zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften

Vorgelegt von

Diplom{ Physiker

Richard Nisius

aus Aachen

Referent : Universit�atsprofessor Dr. Ch. Berger

Korreferent : Universit�atsprofessor Dr. S. Bethke

Tag der m�undlichen Pr�ufung : 14.06.1994





Abstract

Based on R

2+1

(Q

2

), the rate of (2+1)-jet events as de�ned by a modi�ed JADE algorithm, the

strong coupling constant �

s

is measured as a function of the momentum transfer Q

2

in the

range 10 < Q

2

< 4000 GeV

2

, using data from deep inelastic electron proton scattering at the

HERA collider. The result is consistent with the running of �

s

according to the QCD prediction

of the renormalization group equation. The extrapolation of the measured values to the mass

of the Z

�

leads to �

s

(M

2

z

) = 0:121 � 0:015. This preliminary result shows the sensitivity to

�

s

using jets in deep inelastic scattering. The method developed in this thesis will provide a

precise measurement of �

s

in future.
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Chapter 1

Introduction

1.1 Motivation

The present understanding of high energy physics is based on interactions of fundamental

spin 1/2 particles, called fermions, via the exchange of spin 1 particles, the gauge bosons

(; Z

�

; W

�

; g). The fermions are subdivided into quarks (q ) and leptons (l ) and occur in

lefthanded doublets and righthanded singlets.
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Figure 1.1: The fundamental fermions. The leptons are called (l = e, �; �; �

e

; �

�

; �

�

) and the

quarks are denoted by (q = u, d, c, s, t, b). L means lefthanded and R righthanded.

From this basic pattern only the top quark and the �

�

have not yet been observed directly

in experiments. In addition the discovery of the spin 0 Higgs boson, which enters via the

spontaneous electroweak symmetry breaking of the theory, is still missing. The discovery of the

missing objects and the measurement of their properties are the mayor tasks of ongoing and

future experiments.

All other particles, besides the gauge bosons, are built out of the fundamental fermions, for

example, the proton (p) basically consists of three quarks (p = u u d). Given this basis, all

observed phenomena in elementary particle physics can be described quantitatively with high

precision in the framework of a gauge theory based on the group structure U(1)

Y

�SU(2)

W

�

SU(3)

C

1

. This theory, the theory of the standard model (SM), describes the electromagnetic,

weak and strong interactions between elementary 'charged' fermions via exchange of gauge

bosons. The gauge bosons only couple to particles which carry the corresponding 'charge'. In

electromagnetism this charge is the well known electric charge, in strong interactions it is the

'colour' charge, for example the gluons couple to the coloured quarks in the proton.

One fundamental di�erence between the  and (Z

�

;W

�

; g) is that the former does not carry

the 'charge' of the interaction it mediates, however, e.g. the gluon does, it is coloured. This

means a gluon can interact directly with other gluons.

The strength of the interactions is controlled by coupling constants g

i

. The values of the

coupling constants are not predicted by the theory and have to be determined by experiments.

1

The subscripts denote the 'charge', Hypercharge (Y), weak charge (W) and colour (C).

1
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( a )

q

g

( c )

( b )

( d )

Figure 1.2: Typical Feynman diagrams of the 1-loop and 2-loop corrections to the quark gluon

vertex. The diagrams contain quarks (full lines) and gluons (wiggled line).

(a,c) Examples of 1-loop Feynman diagrams

(b,d) Examples of 2-loop Feynman diagrams

In fact the so called constants depend on the renormalization scales �

2

i

(see below). This is

known as the running of coupling constants. The renormalization scales are usually identi�ed

with a typical energy scale of the interaction.

The basic idea to explain the running of the coupling constants is that one consideres

the physical vacuum to be polarizable, like dielectric matter. With this feature screening of

'charge' is possible, and for example, in a scattering process the 'e�ective' charge depends on the

kinematic circumstances. Technically in the framework of a gauge theory, one has to calculate

the modi�cations to the couplings of the gauge bosons which mediate the force. In order to get

�nite probabilities for the interactions one has to reformulate the theory by absorbing in�nite

parts of the contributions into a rede�nition of observables. This rede�nition concerns masses,

couplings and wave functions. For example the bare coupling constant is changed to give the

renormalized one, which can be observed in experiments.

In Quantum Chromodynamics (QCD) [1] the modi�cation of the coupling of gluons to

other gluons and quarks have to be calculated. Typical diagrams which contribute are shown

in �gure 1.2. They are called loop diagrams since they contain closed paths of internal lines of

quarks and gluons.

In Quantum Electrodynamics (QED) the corresponding diagrams are found to give a nega-
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tive contribution, leading to screening of the electric charge. The closer one gets to the charge

the stronger it acts, thus g

1

(�

2

) increases with �

2

. In QCD the corrections are positive, resulting

in 'anti screening' of the colour charge. The theoretical framework is given by the renormaliza-

tion group theory. In the case of strong interactions, the running of g

3

or �

s

(g

2

3

� g = 4��

s

) is

described by equation 2.1, the renormalization group equation (RGE) of QCD. In deep inelastic

scattering �

2

is usually identi�ed with the momentum transfer Q

2

(cf. section 3.1), the typical

energy scale involved.

Due to its importance �

s

has been determined using several observables in various reactions

(cf. section 2.2). Most of the experiments have measured �

s

at a particular center of mass

energy. Identifying the center of mass energy with �

2

, this experimental constraint allows only

to access the value of �

s

at a �xed scale �

2

. In order to test the QCD prediction concerning

the running of �

s

, one has to combine measurements using several observables and/or di�erent

experiments and verify that they obey the predictions of the RGE. This involves the di�-

cult treatment of partly common and partly di�erent systematic uncertainties of the various

experiments. A compilation of the results of �

s

measurements can be found in [2].

Although �

s

has been measured in various experiments, today it is still the fundamental

parameter of the SM which is measured with the least accuracy (cf. table 1.1).

Variable Value relative error �10

6

�(m

e

2
) 1=137:0359895 � 0:0000061 0.045

G

F

=GeV

2

1:16639 � 10

�5

� 0:00002 � 10

�5

17

sin

2

�

W

(MS ) 0:2325 � 0:0008 3441

�

s

(M

2

z

) 0:1134 � 0:0035 31000

Table 1.1: Measurements of fundamental parameters of the SM as quoted by the Particle Data

Group [3].

The velocity of light (c) and the Planck constant (~) are set to unity c = ~ = 1. This will be

done throughout.

The di�erent evolution behaviour of the coupling constants may result in a uni�cation

point at some large energy scale, where all forces act with equal strength. The extrapolation

up to this scale needs as input the precise values obtained from the low energy measurements.

As a consequence, for example predictions in the framework of supersymmetric theories as

extensions of the SM mainly su�er from the inaccurate value for �

s

[4], showing how important

�

s

measurements are.

The following will outline how, at HERA, one can test the prediction of QCD for the running

of �

s

at various scales by using only one observable in a single experiment.
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1.2 How everything comes about

With the commissioning of HERA, the 'Hadron Elektron Ring Anlage', in 1992, a new way

to determine �

s

has been opened. At HERA a pointlike electron (e ) scatters o� a structured

proton. The dominating process in ep scattering with high momentum transfer is the pure

electromagnetic scattering of a quark inside the proton o� an electron via single photon ex-

change. The electron radiates photons of various energies, this means the probed energy scale

�

2

, identi�ed with the momentum transfer Q

2

as discussed above, varies from event to event.

This process is seen as a (1+1)-jet event, one jet originates from the hard subprocess and an

additional jet results from the proton remnant

2

. In this case the hard interaction can be

explained as purely electromagnetic scattering.

If the outgoing quark radiates a gluon, or if instead of a quark a gluon inside the proton

is picked up then, to describe these reactions, one needs also predictions in the framework of

QCD, which allows a calculation of the strength of the quark gluon coupling depending on

�

s

. These processes are (2+1)-jet events. Their rate is to �rst approximation proportional to

�

s

. From this it is evident that measuring the �

2

dependence of the number of (1+1)-jet and

(2+1)-jet events gives a handle on measuring, by using only this observable, the evolution of

�

s

with respect to �

2

in one single experiment.

Following the description of the strategy, this thesis proposes a method for the measurement

of �

s

based on jets in ep interactions recorded with the H1 detector at HERA.

2

For details see section 3.2.



Chapter 2

The strong coupling constant �

s

2.1 The running of �

s

The renormalization group equation controls the running of the strong coupling constant g,

and as a consequence �

s

(g

2

= 4��

s

), as a function of the renormalization scale �

2

, provided g

is small and perturbation theory is applicable.

�(g) = �

2

2@g

@�

2

= �

�

0

(4�)

2

� g

3

�

�

1

(4�)

4

� g

5

+ ::: (2.1)

The coe�cients �

i

can be calculated using the type of diagrams shown in �gure 1.2 loop by

loop. Keeping only the �rst term in the expansion and integrating within the limits g(�

2

); g

0

(�

02

)

yields

log

�

2

�

02

=

(4�)

2

�

0

 

1

g

2

�

1

g

0

2

!

(2.2)

This equation shows that the RGE relates the values of g or �

s

at two different scales (e.g. �

2

; �

02

).

This means, if one measures the value at an arbitrary scale �

0
2

the values at all other scales �

2

are predicted by equation 2.2.

Although it is not necessary this relation is often rewritten by �xing one scale. Here the

scale �

2

is chosen, so that the dependence on g

0

is replaced by a dependence on �

2

. If one

de�nes

log

�

0
2

�

2

=

(4�)

2

�

0

1

g

0

2

(2.3)

and replaces g

0

2

by �

2

in equation 2.2, the 1-loop

1

formula of �

s

follows.

�

s

(�

2

;�

2

) =

4�

�

0

log

�

2

�

2

(2.4)

If �

2

!1 then �

s

(�

2

) approaches zero and the coupling vanishes. In this limit the particles

are free, the so called asymptotic freedom of QCD. In 1-loop the de�nition of � is independent

of the scheme in which the renormalization, given below, of the coupling is performed.

1

It is called 1-loop expression because it is based on the calculation of 1-loop diagram corrections to the

gluon propagator (cf. �gure 1.2).

5
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Figure 2.1: The 1-loop and 2-loop �

s

expressions at di�erent � values.

(a) �

s

in 1-loop (dashed line) and 2-loop (full line) approximation as a function of �

2

for �

4;MS

= 400; 300; 200 MeV from top to bottom.

(b) The 1-loop expression divided by the 2-loop formula for the three � values

as a function of �

2

.

In general the coupling constant can be expressed as a series in (log

�

2

�

2

)

�n

, where n = 1; 2; ::: .

If one keeps the �rst two terms of the RGE one gets, in a similar way as equation 2.4, the well

known 2-loop formula for �

s

.

�

s

(�

2

;�

n

f

;MS

) =

4�

�

0

� L

�

 

1�

�

1

�

2

0

�

logL

L

!

(2.5)

with:

�

0

=

33� 2 � n

f

3

; �

1

=

306 � 38 � n

f

3

; L = log (

�

2

�

2

n

f

;MS

)

Here the term proportional to (log

�

2

�

2

)

�2

is absorbed into the de�nition of �. This choice of

renormalizing the coupling constant is called the modi�ed minimal subtraction scheme (MS )

and the corresponding � is named �

n

f

;MS

.

The coe�cients �

0

and �

1

contain n

f

, which is the number of active quark avours. This

number changes as a function of �

2

. Loosely speaking, if �

2

is smaller than the mass m

2

f

of a

quark of avour f (f = u, d, ...) this quark avour cannot be produced and it does not count in

n

f

. This gives a discontinuity in the description. On the other hand �

s

is a continuous function
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7

and correspondingly �

n

f

;MS

has to change if a quark mass boundary is crossed. There exist

di�erent recipes for changing n

f

, the one used in this thesis is the de�nition of Marciano [5]

2

.

The boundary requirement �xes the relation between the �

n

f

;MS

values e.g.

�

s

(m

2

b

;�

2

5;MS

) = �

s

(m

2

b

;�

2

4;MS

)

�

5;MS

� �

4;MS

�

�

�

4;MS

=m

b

�

2=23

�

2

4

log

m

2

b

�

2

4;MS

3

5

�963=13225

(2.6)

�

5;MS

� 0:66 � �

4;MS

for �

4;MS

= 200MeV

This shows the importance of quoting � together with n

f

(cf. �gure 2.2 (b)). In the 1-loop

approximation this is not important, because a change in � only changes the higher order term.

This can be seen by a similar calculation as the one given in section 2.2 for the variation in the

renormalization scale. Using the 1-loop equation one may simply use a single � value at all

scales, the choice of � is not �xed.

In the following the numerical di�erences of the 1-loop and 2-loop equations are investigated.

Figure 2.1 (a) shows the 1-loop and 2-loop expression of �

s

as a function of �

2

. As seen

from equation 2.5 the �

s

value rises with �

4;MS

. The lines in �gure 2.1 (a) correspond to

�

4;MS

= 400; 300; 200 MeV with 400 MeV giving the highest curve. Due to the negative sign

of the second term, the 2-loop expression reduces �

s

compared to the 1-loop equation. The

relative amount changes with �

2

as seen from �gure 2.1(b) which shows the ratio of 1-loop

and 2-loop expressions for the three �

4;MS

values. The di�erence rises with decreasing �

2

and

amounts to 30� 35% at �

2

= 10 GeV

2

.

Even within the 2-loop expression the variation with �

4;MS

is large. Figure 2.2 (a) shows

the ratio of �

s

for �

4;MS

= 300 and 400 MeV divided by �

s

for �

4;MS

= 200 MeV as a function

of �

2

. A change in �

4;MS

of from 200 to 400 MeV at �

2

= 10 GeV

2

gives a 29% change of �

s

.

The same change in �

4;MS

at �

2

= M

2

z

would change �

s

only by 12%, which shows the higher

sensitivity to �

4;MS

at low �

2

values. This sensitivity is demonstrated in �gure 2.3. Shown is

the error band on �

4;MS

which would be reached if one measures �

s

at a particular �

2

with a

precision of 10%. The three curves correspond to the assumption that the measured �

s

value

leads to a central value of �

4;MS

= 400; 300; 200 MeV . Two observations can be made, �rstly

the sensitivity decreases with �

2

and secondly the higher the � value the broader is the error

band. A measurement of �

s

, corresponding to �

4;MS

= 200 MeV at �

2

= 10 GeV

2

, constrains

�

4;MS

to �

+65

�60

MeV , whereas at �

2

= 10

3

GeV

2

�

4;MS

is only measured with a precision of

�

+130

�90

MeV .

Results are usually quoted in terms of �

4;MS

or �

5;MS

, in order to translate between both the

equation 2.6 is shown in �gure 2.2 (b). As a convention, in the following, �

4;MS

is abbreviated

with � unless stated di�erently.

2

For example, it can either by changed at m

2

q

or (2m

q

)

2

, the choice made is m

2

q

.
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Figure 2.2: The variation of �

s

in 2-loop with � as a function of �

2

.

(a) The �

s

variation with � as a function of �

2

.

(b) The relation between �

4;MS

and �

5;MS

.

Figure 2.3: The � variation for a �xed relative �

s

change of 10%. For explanation see text.
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2.2 Status of �

s

determinations

The strong coupling constant has been measured with di�erent observables at various experi-

ments. A compilation of the present status can be found in table 2.1 obtained from [6].

Q ��

s

(M

Z

0
)

Process [GeV] �

s

(Q) �

s

(M

Z

0
) exp. theor. Theory

GLS [�-DIS] 1.73 0:32� 0:05 0:115 � 0:006 0:005 0:003 NNLO

R

�

[LEP] 1.78 0:360 � 0:040 0:122 � 0:005 0.002 0.004 NNLO

DIS [�] 5.0 0:193

+ 0:019

� 0:018

0:111 � 0:006 0:004 0:004 NLO

DIS [�] 7.1 0:180 � 0:014 0:113 � 0:005 0:003 0:004 NLO

c�c mass splitting 5.0 0:174 � 0:012 0:105 � 0:004 0.000 0.004 LGT

J=	+� decays 10.0 0:167

+ 0:015

� 0:011

0:113

+ 0:007

� 0:005

0.001

+ 0:007

� 0:005

NLO

e

+

e

�

[�

had

] 34.0 0:146

+0:031

�0:026

0:124

+0:021

�0:019

+0:021

�0:019

{ NLO

e

+

e

�

[ev. shapes] 35.0 0:14 � 0:02 0:119 � 0:014 { { NLO

e

+

e

�

[ev. shapes] 58.0 0:130 � 0:008 0:122 � 0:007 0.003 0.007 NLO

p�p! b

�

bX 20.0 0:138

+ 0:028

� 0:019

0:109

+ 0:016

� 0:012

+ 0:012

� 0:007

+ 0:011

� 0:010

NLO

p�p!W jets 80.6 0:123 � 0:025 0:121 � 0:024 0.017 0.016 NLO

�(Z

0

! had:) 91.2 0:122 � 0:008 0:122 � 0:008 0:007 0.004 NNLO

Z

0

[ev. shapes] 91.2 0:119 � 0:006 0:119 � 0:006 0:001 0:006 NLO

Z

0

[ev. shapes] 91.2 0:123 � 0:006 0:123 � 0:006 0:001 0:006 resum.

Table 2.1: A Summary of measurements of �

s

from [6]. The �

s

values are obtained using the

solution to the RGE to O(�

3

s

). The abbreviations NLO, NNLO and resum. are explained in

section 3.2 and 5.2.

Very precise measurements are derived from event shape variables at the Z

�

pole from

e

+

e

�

annihilations at LEP, and from scaling violations in structure functions of deep inelastic

neutrino nucleon (�N ) or muon nucleon (�N ) scattering (DIS [�],DIS [�] in table 2.1). An

interesting e�ect is that the DIS and LEP measurements di�er by one standard deviation, with

DIS giving the lower �

s

value.

Motivated by the subject of this work, the measurements from jet rates are reviewed in

more detail. Figure 2.4 shows the various measurements from jet rates and table 2.2 gives the

present status of these measurements from the LEP experiments [7]. The extracted mean value

is �

s

= 0:119�0:010 that means an 8% error. In principle the evaluation is done as follows, for

details see [7]. Using a Monte Carlo based on the parton shower approach (cf. section 7.1.2)

which describes the observed data with high precision, the measured data distributions are
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ALEPH DELPHI L3 OPAL average

�

s

(M

2

z

) 0:119 � 0:012 0:118 � 0:010 0:116 � 0:012 0:120

+ 0:009

� 0:008

0:119 � 0:010

�

5;MS

[MeV ] 239

+ 197

� 125

226

+ 153

� 104

202

+ 177

� 110

253

+ 144

� 94

239

+ 158

� 108

�

4;MS

[MeV ] 341

+ 243

� 165

325

+ 191

� 138

293

+ 221

� 150

359

+ 179

� 123

341

+ 197

� 143

Table 2.2: �

s

measurements at LEP with jets in E0 scheme (cf. table 4.1) using �xed order

perturbative QCD predictions. The �

s

values in this table are from table 1 in [7].

corrected for detector acceptance and resolution. The errors of this procedure are derived using

di�erent parametrizations of the detector simulation. The hadronization correction is applied

and checked using di�erent fragmentation models or varying parameters within one model. In

total these errors amount to � 1� 3%.

It was shown by OPAL that by applying only these corrections, for di�erent observables,

the deduced �

s

values disagree signi�cantly [8], the reason being the unknown higher order

perturbative corrections, which may be di�erent for the various observables. These uncertainties

are usually parametrized by variation of the renormalization scale �

2

, since in in�nite order

perturbation theory the result should not depend on the choice of �

2

, while in �nite order it

does.

The choice of scale to use as the renormalization scale �

2

is not de�ned by �rst principles in

QCD. What is most commonly used is a 'typical' scale of the process e.g. �

2

equals M

2

z

at LEP.

For gluon radiation from an outgoing quark in e

+

e

�

scattering another reasonable scale is the

transverse momentum of the gluon with respect to the quark. This is numerically important,

because, a change in the scale e.g. �

2

to �

0
2

is equivalent to a change in the coe�cient of the

higher order terms of the perturbative expansion [9]. Starting from the leading order formula,

equation 2.4, one derives:

@�

s

@ log �

2

= �

4�

�

0

(log

�

2

�

2

)

�2

�

s

(�

0
2

)� �

s

(�

2

)

log �

0
2

� log �

2

= �

�

0

4�

�

2

s

(�

2

)

�

s

(�

02

) = �

s

(�

2

) �

"

1 +

�

0

4�

� log

�

2

�

0
2

� �

s

(�

2

)

#

(2.7)

So in the 1-loop approximation, �

s

does not change while changing �

2

! �

0
2

. As can be seen

from equation 2.7 the change in �

s

introduced by a change in �

2

is proportional to �

2

s

. This

means, although the numerical value of �

s

changes while changing �

2

in equation 2.4, formally

in the framework of a perturbative expansion this change appears only the 2-loop coe�cient,

the 1-loop coe�cient remains unchanged. Therefore, only calculations using the 2-loop formula

are useful to measure �

s

. Changing the scale means only reorganizing the relative sizes of

the terms in the perturbative expansion. In principle, if a dimensionless observable

b

O(�

2

) is

calculated to all orders the choice does not matter, the dependence on the unphysical scale �

2
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Figure 2.4: Status of �

s

measurements from jet rates at LEP using �xed order perturbative

QCD predictions (cf. table 2.2).

must vanish.

�

2

d

d�

2

b

O(�

2

) = 0 (2.8)

However only calculations to �nite order are available, and a number of theoretically motivated

concepts are suggested, to 'decide' what is the best scale to use.

One is the principle of fastest apparent convergence [10], which means one chooses �

2

such

that the term of highest calculated order vanishes. Another attempt is the principle of minimal

sensitivity [11], which is a scheme where one chooses �

2

at the point where the derivative

with respect to �

2

vanishes. The �

2

value corresponds to a local extreme of

b

O(�

2

), where

the variation is smallest. Finally the e�ective charge scheme [12] is mentioned. Although the

motivations are di�erent the various attempts suggest scales �

2

which are smaller than M

2

z

for

e

+

e

�

[7], resulting in higher �

s

values.

From an experimental point of view, without any theory inspired model, one may simply

regard �

2

as a free parameter and �t it to the data.

In general if any of these approaches leads to a scale �

2

which is far away from the typical

mass scale of the process e.g.M

2

z

at LEP, this is an indication that the theoretical expression is

unreliable

3

, and because of the reorganizing of terms by changing the scale (cf. equation 2.7)

it can be interpreted as a hint for important higher order corrections. With this in mind it is

clear that evaluating a scale error is a di�cult task.

Usually at LEP a parameter x

�

= �

2

=M

2

z

is introduced and varied in a reasonable range

resulting in a scale error which is the main source of the theoretical uncertainty. It accounts for

an error in the order of 10% on �

s

and it is di�erent for various observables [7]. The low values

for �

2

favoured in the LEP jet analysis, where data is compared to second order calculations,

3

Then log(�

2

=M

2

z

) is large and the convergence of the series may be spoiled as well.
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shows the importance of higher order terms and lead to the concept of resummed calculations

(cf. section 5.2) to account for at least a part of them. The results of the LEP experiments

show a much reduced scale dependence (x

�

close to 1) for observables calculated with resummed

higher order terms [7].

The scale problem will also be observed in DIS scattering. Here it is even more complex

because more scales are involved in the hard scattering process (cf. section 3.1) and in addition

one has to deal with the scales in the parton density functions (cf. section 3.3).

Because of the logarithmic dependence of �

s

on �

2

the relative error of �

s

(M

2

z

) is smaller if

one measures �

s

at a lower energy scale and consequently at a lower �

2

(cf. �gure 2.3), however

the result is in general less reliable for two reasons. First, at low �

2

the evolution parameter

�

s

is large, indicating that the justi�cation to use perturbation theory gets weaker, and second

non perturbative e�ects, meaning terms of the form (�=�)

N

, namely target mass e�ects and

higher twist contributions, play a more important role. They vanish for �

2

!1.

First indication that an �

s

determination, using the hadronic �nal state in deep inelastic

scattering, may be possible is reported from the E665 Collaboration. The dependence of the

average squared transverse energy of jets, which in leading order is proportional to �

s

, is studied

in (�N ) scattering [13]. The data are corrected to the hadron level and then compared to a

leading order parton level QCD prediction in the range 3 < Q

2

< 25 GeV

2

.



Chapter 3

Deep inelastic scattering DIS

The term deep inelastic scattering (DIS) denotes the process in which a lepton l, either charged

(e; �), or neutral (�

(�)

e

; �

(�)

�

), scatters o� a nucleon N (N = p; n), involving a large momentum

transfer (Q

2

� �

2

). This interaction is mediated via a neutral (; Z

�

) or charged (W

�

) boson

and is called a neutral current (NC) and a charged current (CC) interaction respectively.

p (P) fi/p r

σ

〉

ξ⋅ P

e (k)

e’ (k’)

γ (q)

s

〉

X (h)

Figure 3.1: The neutral current deep inelastic scattering process.

At HERA the incoming lepton is an electron traveling in the -z direction in the laboratory

system

1

, with four momentum k = (E; 0; 0; p

z

) = (26:7; 0; 0;�26:7) GeV . The nucleon is a

proton of momentum P = (E

p

; 0; 0; p

z p

) = (820; 0; 0; 820) GeV . The following consideration is

restricted to the NC case with single photon exchange.

3.1 Kinematic variables in DIS

The NC process (cf. �gure 3.1) where the electron (e) scatters o� a proton (p) producing an

electron (e

0

) and a hadronic �nal state (X) can be written as

1

The +z or forward direction is the direction of motion of the incoming proton. The scattering angles are

calculated with respect to this axis.

In this notation a four vector is given as p = (E; p

x

; p

y

; p

z

).

13
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e(k) p(P )! e

0

(k

0

)X(h)

The symbols in brackets represent the four vectors of the particles, k

0

= (E

e

; p

x e

; p

y e

; p

z e

) and

h = (E

h

; p

xh

; p

y h

; p

z h

). In this process the ep center of mass energy is given by

s

ep

= (P + k)

2

= 2Pk (3.1)

In the last step particle masses have been neglected which will be done throughout. This is a

good approximation as the momenta of the particles are much larger than their masses. With

the four vectors of the incoming electron and proton it follows s

ep

= 4 �E �E

p

� 295

2

GeV

2

for

HERA.

The exchanged virtual boson has the invariant mass q which is derived from the electron

variables as

q

2

= (k � k

0

)

2

(3.2)

The momentum transfer Q

2

> 0 is de�ned as the negative mass squared of the boson.

Q

2

� �q

2

(3.3)

If one introduces the two Bjorken scaling variables x; y de�ned by

x �

Q

2

2Pq

(3.4)

y �

Pq

Pk

(3.5)

the four vector of the outgoing electron is �xed. The last three equations however are interre-

lated, as

Q

2

= x � y � s

ep

(3.6)

The global event kinematic can be described by two independent variables, the most commonly

used are x and Q

2

.

Other useful variables are the boson proton center of mass energy s

p

which is equivalent

to the total hadronic mass squared W

2

,

s

p

= (P + q)

2

= 2Pq �Q

2

= y � s

ep

�Q

2

= Q

2

1 � x

x

�W

2

(3.7)

and the mass squared ŝ of the hard subsystem.

ŝ = (�P + q)

2

= 2�Pq �Q

2

(3.8)

Here � denotes the momentum fraction of the proton carried by the incoming parton entering

the hard interaction. Insertion of x in equation 3.8 leads to the relation between the Bjorken x

value and �.

� = x(1 +

ŝ

Q

2

) (3.9)

This shows that only for a massless hard subsystem ŝ = 0 the momentum fraction � equals the

Bjorken x value, otherwise � > x.
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Figure 3.2: Basic kinematic quantities in DIS. All �gures show the (x;Q

2

) plane with lines for

�xed values of y, one per decade. The leftmost line corresponds to y = 1 and the rightmost

to y = 10

�4

. The four di�erent �gures each show lines of constant values for one particular

quantity. Two concern the scattered electron and two the scattered quark in the simple case

ŝ = 0.

(a) The energy of the scattered electron.

(b) The energy of the scattered quark.

(c) The polar angle of the scattered electron.

(d) The polar angle of the scattered quark.
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Altogether the kinematic situation is very complex in this highly asymmetric situation.

Figure 3.2 shows kinematic quantities of the electron and a massless hard subsystem in terms

of isolines in energy and polar angles. To guide the eye iso y lines are drawn as well.

If one measures both the hadronic �nal state and the scattered electron the event is over-

constrained. One can either use the electron energy (E

e

) and angle (#

e

), or the hadronic �nal

state alone to measure the basic kinematic quantities.

The electron measurement is obtained via,

y

e

=

Pq

Pk

=

P (k � k

0

)

Pk

= 1�

E

e

� p

ze

2E

Q

2

e

= �q

2

= �(k � k

0

)

2

= 2kk

0

= 2(EE

e

�

~

k

~

k

0

) = 2EE

e

(1 + cos#

e

)

Q

2

e

=

p

2

Te

1� y

e

x

e

=

Q

2

e

s

ep

y

e

(3.10)

and the hadron measurement via

y

h

=

Pq

Pk

=

P (P

h

� P )

Pk

=

E

P

(E

h

� p

zh

)

2EE

P

=

E

h

� p

zh

2E

Q

2

h

=

p

2

Th

1 � y

h

x

h

=

Q

2

h

s

ep

y

h

(3.11)

There exist various other methods to calculate the kinematic variables [14] which are combina-

tions of hadronic and leptonic measurements. Which method to use in which kinematic regions

should be decided in terms of resolution and systematic shifts of the mean values.

3.2 DIS in terms of parton- scattering

Now a closer look to the electron proton scattering in the DIS regime will be done. This is the

region where �

s

is small and perturbation theory is applicable. Due to the Heisenberg relation

�r�p � ~ (3.12)

high momentum transfer is equivalent to short distances. Then the partonic content of the

proton is resolved by the photon. It interacts directly with the quarks in the proton with a

certain probability. The probabilities for this elementary processes can be calculated with the

help of the Feynman rules which allows the cross section of the NC process to be expressed as

a power series in �

s

.

�

tot

=

1

X

N=0

�

N

= a

0

�

o

s

+ a

1

�

1

s

+ a

2

�

2

s

+ ::: (3.13)

The contribution to the �

N

can be illustrated by Feynman diagrams to a given order in �

N

s

. In

this picture the electron delivers the photon and the proton the partons which enter the hard

scattering process.
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p r (+1)

e

e’

q (1)

Figure 3.3: The lowest order O(�

o

s

) Feynman diagram of ep scattering.

To be more speci�c, the lowest order in this perturbative expansion describes the purely

electromagnetic q ! q

0

scattering. The probe of the quark with the photon splits the process

into two parts. The time before the photon hits the quark is called the initial state (IS),

everything afterwards the �nal state (FS), where both parts will interfere.

This scattering (cf. �gure 3.3) leads to two outgoing partons, the struck quark q (1) and

the leftover part from the proton the remnant, which in this simplest case is a diquark dq

2

To account for more complex situations for the proton remnant it will be denoted with r and

counted separately as (+1) in this counting scheme. This scattering leads to a (1+1) parton

�nal state, described in the naive QPM, where the proton is modeled as consisting of three

valence quarks (p = u u d ) which share the momentum of the proton while having no intrinsic

transverse momentum. Formally this reaction is to order O(�

o

s

).

More complex scattering is described in the framework of QCD. Each coupling to a gluon

gives rise to a factor �

s

in the cross section. Two graphs containing one gluon each exist to

O(�

s

).

� Similar to photon radiation of charged particles the quarks can radiate gluons as long as

the uncertainty relation is ful�lled. A virtual gluon in turn can decay into a q�q pair. If

during this uctuation one of the resulting quarks is probed by the photon this leads to

a boson gluon fusion (BGF) event sketched in �gure 3.4 (a).

� Analogous to the Compton scattering in QED the radiation of a gluon o� a quark is

called QCD Compton (QCDC) process, �gure 3.4 (b). The gluon can be emitted before

or after the quark interacts with the photon. These two possibilities result in the same

�nal state, which means according to the Feynman rules their contributions have to be

added on the amplitude level.

Now there are (2+1) partons in the �nal state, (q; �q) or (q, g) and the remnant r (+1) as

before. From this one �nds the general rule that the leading order (LO) contribution

3

to a

(N+1) parton �nal state is of O(�

N�1

s

).

2

To use the term parton for a structured object like the diquark is not correct, however it is treated as one

single object in the whole consideration and therefore it is denoted as parton as if it were fundamental.

3

The contribution proportional to the lowest occuring power in �

s

.
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( a )

p r (+1)

e

e’

q (2)

q (1)

( b )

p r (+1)

e

e’

q (2)

g (1)

Figure 3.4: First order O(�

s

) Feynman diagrams of ep scattering.

(a) The boson gluon fusion graph.

(b) The QCD Compton graph.

Each extra gluon gives rise to an extra power of �

s

. Also a virtual gluon at the  q vertex

generates a process to O(�

s

) but leads only to a (1+1) parton state, �gure 3.5 (a). These types

of graphs are in an obvious notation called next to leading order (NLO) contributions.

To O(�

2

s

) one gets a series of new Feynman diagrams (cf. �gure 3.6) giving (3+1) partons

in the �nal state. For the �rst time this includes the triple gluon vertex.

4

To O(�

2

s

) one gets also next to leading order contributions to the (2+1) parton �nal state

�gure 3.7 and even next to next to leading order (NNLO) contribution, �gure 3.5 (b), to the

(1+1) parton �nal state.

In principle the series can be extended to all orders in �

s

. As can be seen already from

O(�

2

s

), the number of graphs which have to be calculated increases rapidly from order to order

and in practice one can not expect calculations to all orders to become available. A partial

solution to that problem is the method of resummed calculations which accounts for the leading

logarithmic terms to all orders. The basis of this technique as well as the status of calculations

will be addressed in section 5.2.

Available at the moment is a �xed order calculation to O(�

2

s

) with some limitations (cf.

section 5.1).

These partons only 'exist' in the ideal world of theoretical calculations, they are not acces-

sible in an experiment, however after hadronization they will manifest as jets in the detector,

which is the subject of chapter 4.

3.3 The parton density functions

The basic concept for introducing parton density functions (PDF's) is the theorem of factoriza-

tion [16], which says that cross sections (�) can be written as convolutions of matrix elements

or partonic hard scattering cross sections (�̂) based on basic Feynman diagrams (as discussed

4

Because the �eld quanta interact among each other, the existence of this vertex is the manifestation of the

non abelian character of QCD. Isolating this process is of major interest, but needs the possibility of telling

quarks from gluons, which is not easy after hadronization [15].
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p +1

e

e’

1

p +1

e

e’

1

Figure 3.5: Virtual corrections to the (1+1) parton �nal state in ep scattering.

(a) The NLO virtual correction to O(�

s

).

(b) A NNLO virtual correction to O(�

2

s

).

( a )

p +1

e

e’

2

1

( b )

p +1

e

e’

1

2

Figure 3.6: Some generic second order Feynman diagrams of ep scattering. These are (3+1)

parton �nal states. If due to resolution two partons are not resolved as indicated by the small

bend this will lead to a (2+1) jet event (cf. section 5.1).
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( a )

p +1

e

e’

2

1

( b )

p +1

e

e’

1

2

Figure 3.7: Virtual corrections to the (2+1) parton �nal state in ep scattering.

(a) A NLO correction O(�

3

s

) to the BGF graph.

(b) A NLO correction O(�

3

s

) to the QCDC graph.

above), with probability functions, the PDF's, for �nding the incoming partons in a given

particle, schematically

� =

X

Z

d� � PDF � �̂ (3.14)

In the QPM for purely electromagnetic electron proton scattering this can be written as

�

ep

=

X

i

Z

d� � �

i=p

(�) � �̂

eq!e

0

q

0

(3.15)

�̂

eq!e

0

q

0

is the matrix element and �

i=p

(�), where i denotes the quark avour (i = u, d), gives

the probability to �nd a quark of type i in the proton which carries a momentum fraction � of

the proton namely p

q

i

= �P .

The important fact of this concept is that the PDF's are universal, in the sense that they

do not depend on the process under consideration. The PDF's of the proton are the same for

example for p�p scattering and ep scattering.

Now the changes introduced by QCD are inspected. The major change is that the PDF's no

longer are only functions of � but also depend on the renormalization scale �

2

(cf. section 2.1)

and the factorization scale �

2

f

.

�

i=p

(�) ! �

i=p

(�; �

2

; �

2

f

) (3.16)

The factorization scale is the typical scale to divide between the partonic cross section and

the PDF. In other words this scale serves to de�ne the separation between the short range

hard interaction (�

2

f

large) and the long range soft interaction (�

2

f

small) in terms of a de�nite

description, the factorization scheme (cf. chapter 3 in [16]). This makes both the partonic cross

sections and the PDF's scheme dependent.

The �rst term introduced by QCD is to O(�

s

) meaning that one can also pick up gluons

radiated by quarks in the proton, or sea quarks produced by g ! q�q. Consequently PDF's for

valence quarks, sea quarks and gluons i = (u; �u; d;

�

d; s; �s; c; �c; b;

�

b; t;

�

t ; g) are needed.
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QCD predicts the probabilities for the branchings g ! q�q, q ! qg and g ! gg in terms of

the Altarelli Parisi splitting functions. The leading order expressions are the following.

P

g!q�q

(z) =

1

2

�

�

z

2

+ (1� z)

2

�

P

q!qg

(z) =

4

3

�

1 + (1� z)

2

z

P

g!gg

(z) = 6 �

�

1� z

z

+

z

1 � z

+ z(1 � z)

�

(3.17)

For example g ! q�q means a gluon of momentum �

0

splits in a quark of momentum � with

� = z�

0

and an antiquark of momentum (1�z)�

0

. Thus the evolution of the PDF's, with respect

to �

f

, are known in the framework of the Altarelli Parisi evolution equation.

�

f

d�

i=p

(�; �

2

; �

2

f

)

d�

f

=

X

j=q;�q;g

�

s

(�

2

)

2�

Z

1

�

d�

0

�

0

P

ij

(

�

�

0

) � �

j=p

(�

0

; �

2

; �

2

f

) (3.18)

An interesting fact is that the lower bound of the integral is �. To evaluate PDF's at a scale

�

2

f

one only needs to know the PDF's for �

0

> � at some scale �

2

0;f

. The only unknown left

is the set of PDF's at a given starting point �

2

0;f

. Everything else is predicted by this integro

di�erential equation.

On the other hand QCD does not contain a prediction of the evolution of PDF's with �.

The � dependence has to be parametrized and �tted to data

5

.

At this point one has to choose the factorization scheme in which the calculation is per-

formed. Commonly used are the modi�ed minimal subtraction scheme and the deep inelastic

scheme, abbreviated by MS and DIS scheme. They di�er in the way the structure function

F

2

of deep inelastic scattering is de�ned, but they are related (cf. chapter 5 in [16]). A given

PDF in the MS scheme can be unambiguously converted to a PDF in the DIS scheme and

vice versa. In the DIS scheme the coe�cient functions, which have to be convoluted with the

PDF's to evaluate the structure functions F

i

, are de�ned to be proportional to delta functions

to all orders in perturbation theory. Correspondingly all corrections are put into the quark and

antiquark distributions.

There exist various sets of PDF's collected in libraries. The most popular libraries are

the PDFLIB [17] and the PAKPDF [18]. The PDF's were obtained by �ts to the existing

data. To �t the data a program is needed which contains the integro di�erential equations, the

cross sections for the measured processes to a given order in �

s

and a formula to calculate �

s

,

everything consistent in one scheme (cf. chapter 8 in [16]). A parametrization as a function

of � is chosen and by iteration the PDF's together with �

s

are determined. Depending on the

choices taken one gets a leading order (LO) or next to leading order (NLO) PDF in the DIS or

MS scheme. Schematically the PDF's in NLO have the general form.

�

i=p

(�; �

2

; �

2

f

) = �

�

i=p

(�; �

2

; �

2

f

) + �

s

�

1

i=p

(�; �

2

; �

2

f

) (3.19)

Figure 3.8 shows the quark distribution (the valence quark and sea quark contributions are

added) and the gluon distribution for two values of �

2

f

for the PDF sets MRSD

�

and MRSD

�

as function of �. In addition the ratio of both is shown in the range where � ��

i=p

(�) > 1%. For

� > 10

�2

where data exist, they agree, but the extrapolation in the low � region is based on

5

For example the CTEQ collaboration uses as input parametrization

�

i=p

(�; �

2

0;f

) = A

0;i

� �

A

1;i

� (1 � �)

A

2;i

� (1 + A

3;i

�

A

4;i

) at �

2

0;f

= 4 GeV

2

, i=(u; d; g; �u;

�

d; s).
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Figure 3.8: The PDF's MRSD

�

and MRSD

�

for two values of �

2

f

, �

2

f

= 50 GeV

2

(a) and

�

2

f

= 500 GeV

2

(b). Shown are the quark and gluon distributions in the upper plots, the ratios

can be found in the lower ones (c, d). For discussion see text.

assumptions and is chosen to be di�erent for the two sets. This region will be covered by HERA

for the �rst time, and the measurement of the structure function F

2

[19] will constrain the PDF's

further. At the moment this di�erence shows the magnitude of the expected uncertainty one

has to deal with. For low �

2

f

and low � (� < 10

�3

) the di�erence is biggest and reaches factors

of 2-3 as seen from �gure 3.8 (c). In this work both PDF's, MRSD

�

andMRSD

�

will be used in

parallel depending on the availability of fully simulated and reconstructed Monte Carlo events.

In order to use the PDF's properly some clari�cation of terminology is necessary.

� LO cross sections are calculated to the lowest occuring power of �

s

e.g. �

LO

(ep! e

0

X) = O(�

o

s

), �

LO

(ep ! (2 + 1)� jets) = O(�

s

)

� NLO means terms in the next to leading power of �

s

are taken into account as well

e.g. �

NLO

(ep! e

0

X) = O(�

s

), �

NLO

(ep ! (2 + 1)� jets) = O(�

2

s

)

� The 1-loop and 2-loop formula, equations 2.4 and 2.5 are the LO and NLO expressions

for �

s

Consequently a LO PDF is evaluated by using LO cross sections, the LO Altarelli Parisi evolu-

tion equation and the LO expression for �

s

. The given � value of that �t is de�ned with respect
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to the 1-loop expression. To evaluate a NLO PDF, NLO cross sections, the NLO Altarelli Parisi

evolution equation and the 2-loop formula for �

s

are used, giving the corresponding � value.

In turn to convolute a PDF with cross sections calculated in a given scheme in LO/NLO one

is forced to use the LO/NLO PDF's in the same scheme, otherwise the results are of limited

use (cf. chapter 8 in [16]). In these calculations usually a simpli�cation is made by taking

�

2

= �

2

f

= Q

2

which leads to:

�

i=p

(�; �

2

; �

2

f

) = �

i=p

(�;Q

2

) (3.20)

The impact of the simpli�cation for this analysis will be studied in section 11.5.3. Consistent

calculations of jet cross sections in DIS can be found in section 5.1



Chapter 4

Jets and jet Algorithms

What is a jet? Naively speaking a jet is a bunch of collimated particles. A more elaborate

answer would be that a jet is a concept which addresses two problems:

1. The relation between observed hadrons and primary partons

2. The singularities in cross section calculations

In order to make this more clear the evolution of an ep scattering event is given in �gure 4.1.
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F
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n
 

partons hadrons

H
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d

et
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r 

detector objects

Figure 4.1: Event evolution sketch. For explanations see text.

Consider, for example, a BGF event, the two outgoing quarks are o�shell, p

2

q

6= 0, and radiate

gluons, which in turn can create q�q pairs, thereby loosing part of their o�shellness/virtuality.

In addition there exists a parton cascade in the initial state. If p

2

q

� �

2

, the partonic state will

recombine into hadrons, this is called hadronization or fragmentation. The outgoing hadrons

will manifest themselves as energy deposits in a detector.

The problem is how to recombine the hadrons, or the detector objects, in order to get the

best estimate of the four vectors of the original quarks. This is needed to test QCD predictions,

which are available only on the parton level. It is done by a jet de�nition, implemented in a

jet algorithm, which needs prescriptions to take the following decisions.

1. Which hadrons to combine next

24
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2. How to combine the hadron 4-vectors

3. When to stop the procedure

Stopping the procedure at a chosen cuto� value means de�ning the resolution power of the

algorithm, so de�ning how 'close' the quarks may be, to be still resolved at a particular

cuto�. This means a 2+1 parton state (cf. �gure 3.4) may result in a (N+1) jet state

(N = 0; 1; :::; N

hadrons

� 1), depending on the chosen cuto� value. If the cuto� approaches

zero one enters the phase space region where the cross section diverges (cf. section 5.1). Choos-

ing a minimum cuto� value avoids the divergencies in the cross section.

There exist various algorithms, the most popular and frequently used are described below.

4.1 Cone Algorithm

The cone algorithm was developed for the analysis of p�p collider data. This method is based on

the summation of energy in a (��; �') grid of pseudorapidity (�), de�ned as � � � log(tan(#=2)),

and azimuthal angle ('), starting from a prominent energy deposit and summing up to a

distance of R =

p

��

2

+ �'

2

around it.

One has to make four choices, the de�nition of objects to be clustered, the minimum energy

or transverse energy which is required for a prominent energy deposit, the value of the radius

R and the minimum transverse energy for an summed object to be considered as a jet.

An e�ort was made to standardize this choices which lead to the snow mass accord [20].

The proposed value for R is R = 0:7. The values of the used energy scales are not standardized,

they are chosen di�erently depending on the reaction under study.

4.2 Cluster Algorithms

4.2.1 The JADE Algorithm and the pseudo particle concept

The JADE-algorithm was introduced by the JADE Collaboration [21] to measure jets in e

+

e

�

annihilations. The measure y

ij

is the invariant mass squared between two objects m

2

ij

scaled

with a typical energy scale of the process.

y

ij

=

m

2

ij

scale

2

(4.1)

In e

+

e

�

collisions where only one scale is involved, the center of mass energy E

2

CM

= Q

2

is

the natural choice and this is experimentally approximated by the visible energy E

2

vis

. The

appropriate choice for ep scattering will be discussed in section 5.1.

There exist various possibilities to de�ne m

2

ij

and how to combine the two objects (i; j) into

a new one k. The various possibilities, called recombination schemes, are listed in table 4.1 and

the impact of the various choices on a jet analysis is discussed in section 10.4.2. In principle the

algorithm works as follows (cf. �gure 4.2). First one has to de�ne a number of objects which

should be clustered, then the following algorithm is performed.

1. All pairs of m

2

ij

are calculated.

2. If the smallest m

2

ij

value is smaller than y

c

� scale

2

the pair (i; j) is combined to form an

object k, according to the chosen recombination scheme. Here, y

c

is the free parameter

which can be chosen to get a desired separation in m

2

ij

.
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select objects

calculate dij
find minium dm

dm > yc
no

yes

recombine/reject

N - Jets

Figure 4.2: The ow diagram of jet algorithms, sketching the common strategy of a clustering

algorithm to derive the number of jets observed in a reaction.

3. The objects i and j are removed, k is included and one starts over from step 1.

This procedure is continued until all the possible pairs of m

2

ij

are greater than y

c

� scale

2

. The

number of remaining objects is the number of jets de�ned by this algorithm at y

c

. The JADE

algorithm has been used with great success in e

+

e

�

annihilations.

There are several complications in ep scattering compared to the situation at e

+

e

�

colliders

where the center of mass system and the laboratory system coincide.

� The hadrons are strongly boosted to the direction of the incoming proton. Therefore

most of the fragmentation products of the proton remnant will not be observed in the

acceptance region of a detector.

� Because the struck parton carries colour charge the remnant is coloured and via charge

forces it is connected to the partons of the hard subprocess. This results in gluon radiation

between the remnant and the connected partons giving an additional energy ow between

the hard subsystem and the remnant which at least partly belongs to the remnant.

� In the jet cross section calculation (cf. section 5.1) it is also checked whether an outgoing

parton can be resolved from the proton remnant and this inuences the jet classi�cation

in the classes (2+1)-jet or (1+1)-jet. Consequently the remnant has to be taken into

account in the jet algorithm.

A jet algorithm for ep scattering has to correctly deal with all these e�ects. This leads to

the concept of introducing a so called pseudo-particle which accounts for the proton remnant.

The pseudo particle represents the best estimate of the unseen proton remnant one can get

from the observed part of the event. This concept was suggested by D. Graudenz and �rst

experimentally used in a jet analysis on photoproduction events in H1 at HERA [22].
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The e�ect of this concept for DIS events was �rst studied in [23], the details can be found

in section 10.3.1.

scheme m

2

ij

recombination remarks

JADE 2E

i

E

j

(1� cos �

ij

) p

k

= p

i

+ p

j

m

2

ij

neglects individual masses

E (p

i

+ p

j

)

2

p

k

= p

i

+ p

j

Lorentz invariant

E0 (p

i

+ p

j

)

2

E

k

= (E

i

+ E

j

)

~p

k

=

E

k

j~p

i

+ ~p

j

j

� (~p

i

+ ~p

j

) ~p not conserved

P (p

i

+ p

j

)

2

~p

k

= ~p

i

+ ~p

j

; E

k

= j~p

k

j E not conserved

P0 (p

i

+ p

j

)

2

~p

k

= ~p

i

+ ~p

j

; E

k

= j~p

k

j same as P but scale updated

after each recombination

Table 4.1: Recombination schemes of the JADE algorithm.

4.2.2 The k

t

Algorithm

Another type of cluster algorithm, the k

t

algorithm, is based on a relative p

t

measure. It was

introduced during a QCD workshop in Durham and is therefore often called Durham algorithm

as well.

Recently there was an attempt to standardize jet counting in the framework of the k

t

algorithm for e

+

e

�

;p�p ; ep ; p reactions [24], which led to a modi�cation of the k

t

algorithm

by introducing a concept to account for the various remnants involved

1

. The algorithm is

now essentially a two step procedure. The �rst step tries to separate the hard process from

the remnant and the second tries to resolve the jet structure of the hard interaction. In this

procedure the Breit frame is the prefered Lorentz frame by theoretical arguments [25].

For DIS the procedure is as follows. Two distance measures are introduced, y

kp

and y

kl

,

which are scaled by a parameter called E

t

, ful�lling the requirement Q

2

� E

2

t

� �

2

. Here E

t

is an arbitrary scale, note, it is not the total transverse energy of the event with respect to

the beam direction. The indices k, l denote the objects to be clustered and p stands for the

incoming proton vector.

y

kp

=

2(1 � cos �

kp

)

E

2

t

� E

2

k

y

kl

=

2(1 � cos �

kl

)

E

2

t

�min(E

2

k

; E

2

l

) (4.2)

1

In photoproduction (p scattering at Q

2

� 0), also a photon remnant exists, if the photon is resolved and

if a hadronic content of the photon, either a quark or a gluon, enters the hard interaction.
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The choice of the minimum value of E

2

k

and E

2

l

in y

kl

ensures that the algorithm 'factorizes' in

the sense described in 5.2. After choosing the objects to be clustered the following procedure

is performed.

1. Calculate all y

kl

and y

kp

.

2. If the minimum of all y

kl

and y

kp

is smaller than unity, clustering takes place. In the case

where one of the y

kl

is the smallest, k and l are combined to form m using p

m

= p

k

+ p

l

.

Then k; l are removed and m is included instead. If one of the y

kp

is the smallest, one

simply removes k.

3. Now one starts over from step 1. until all y

kl

and y

kp

exceed unity.

The result after this �rst step is a 'beam jet' and a number of objects called 'macro jets'. The

name k

t

algorithm originates from the fact that if two objects are close in angle to each other,

one can perform a Taylor expansion of the cos term

2

getting y

kp

=

k

2

tk

E

2

t

and y

kl

=

min(k

2

tk

;k

2

tl

)

E

2

t

.

Then the distance measure is simply the minimum scaled transverse momentum squared of

two objects. In principle, what the algorithm does, is absorbing everything which has a k

2

t

smaller then E

2

t

in the remnant, unless it is closer to another object. Given this, one chooses

y

c

=

Q

2

o

E

2

t

� 1 and tries to resolve the macro jets using the following procedure.

1. Calculate all y

kl

.

2. If the minimum of all y

kl

is smaller than y

c

, combine k; l to form m as before, remove k; l

and include m.

3. Start over from step 1 until all y

kl

are bigger than y

c

.

The �nal objects have the property that the relative transverse momentum between any two

objects is bounded by y

c

, �k

t

�

p

y

c

�E

t

. They are the jets de�ned by this algorithm at a �xed

but free y

c

. In contrast to the JADE algorithm the remnant is not clustered and consequently

jet counting is done by suppressing the (+1) in the number of jets.

Varying E

2

t

means steering the required k

t

resolution from the remnant and inuencing the

number of jets at a �xed y

c

value. If E

2

t

is bigger than the total transverse energy squared of

the event one ends up with zero jets.

The theoretical motivations of this concept can be found in section 5.2 and the application

for the H1 experiment is discussed in section 10.5

2

2(1� cos �) = sin

2

� and the transverse momentum is k

tk

= E

k

sin �

k

.



Chapter 5

Status of jet-cross section calculations

in DIS

5.1 Second Order calculations

The jet cross section are calculated for (1+1)-jets to O(�

s

) [26, 27, 28], and for (2+1)-jets to

O(�

2

s

) [29, 30]. In this analysis the calculations of D. Graudenz [29] are used. The cross sections

can be written in terms of the cross sections to a de�nite helicity state of the virtual photon.

There exist di�erent ways to decompose these contributions, which result in some confusion

1

.

One limitation in the calculation of [29] is given by the fact that in the (2+1)-jet cross section to

O(�

2

s

) only �

g

is calculated

2

, which means that the longitudinal part of the term proportional

to �

2

s

is only partly taken into account, however, the numerical importance of this is expected to

be small (cf. �gure 5.1). Further details of the calculation are treated in [29]. In the following

only the major ingredients required for comparing to experimental data are discussed.

In order to derive jet cross sections one has to calculate the Feynman diagrams discussed

in section 3.2 and map them to (N+1)-jet �nal states by carefully treating the divergencies.

To be more speci�c, for the (N+1)-jet cross section to O(�

N

s

) one has to calculate the leading

contribution, or the Born term O(�

N�1

s

) and the next to leading contributions. These are the

virtual corrections, which means graphs of type �gure 3.5 (a) to O(�

N

s

) and the Born term

O(�

N

s

) in that physical region where it appears as an (N+1)-jet event (cf. �gure 3.6).

In this calculation two types of singularities occur if an internal line is onshell (the parton is

massless). For example, if a quark q radiates a gluon q ! q

0

g, it is onshell if either the gluon is

soft E

g

� 0 (infrared divergence), or collinear cos �

q

0

g

� 1 (collinear divergence) as can be seen

from m

2

q

= m

2

q

0

g

= 2E

g

E

q

0

(1 � cos �

q

0

g

). The same argument holds for gluon splitting g ! q�q

and gluon loops q ! q

0

g ! q because only four vector arithmetics is used.

The divergencies of the virtual and real corrections cancel, for the initial state divergencies

collinear to the incoming proton, this does not hold and the solution to this is to renormalize

the parton density functions. This procedure makes the calculation renormalization scheme

dependent (cf. section 3.3). The calculations in [29] are done in the minimal subtraction

scheme MS , using the technique of dimensional regularization in d = 4 � 2� dimensions. This

1

The terminology concerning the terminus 'transversal' in [29] di�er from that used for instance in [30]. The

relations are �

g

= 2(1 � �)�

U

� �

L

which is denoted as 'transversal' in [29] and �

0

= �

L

. Here U stands for

unpolarized or transversal polarized photons and L for longitudinal polarized in the convention of [30].

2

�

g

is the result of the trace of the hadron tensor, de�ned as the contraction of the hadron tensor H

��

with

the metric tensor g

��

, TR(H

��

) = g

��

�H

��

.

29



30 CHAPTER 5. STATUS OF JET-CROSS SECTION CALCULATIONS IN DIS

introduces the scales �

2

and �

2

f

in the calculation and gives rise to terms of the form log

�

2

Q

2

and

log

�

2

f

Q

2

in the cross section.

The outcome of matrix element calculations are (N'+ 1) partonic �nal states which have to

be mapped to a (N + 1) jet �nal state with N

0

� N . To get a classi�cation in (1+1)-jet and

(2+1)-jet events one has to de�ne a borderline in phase space between both, which is equivalent

to introducing a jet resolution parameter. To account for both singularities (see above) m

2

ij

is

chosen and scaled by W

2

in order to get a dimensionless parameter, the well known y

c

, de�ned

as

y

c

=

m

2

ij

W

2

(5.1)

where W

2

is the invariant mass of all partons squared and the indices (i, j) run over all partons

including the remnant.

If one includes the remnant in the clusteringW

2

is the appropriate scale, which is equivalent

to the choice of E

2

vis

for jet reconstruction in e

+

e

�

reactions. The (1+1)-jet cross section is a �ve

fold di�erential and the (2+1)-jet cross section an eightfold. This and the fact that integration

over � requires integration over the PDF's, which are only available in a tabularized form (cf.

section 3.2), makes it necessary to use numerical integration methods to evaluate cross sections.

The corresponding Monte Carlo program PROJET will be discussed next.

5.1.1 The cross section Monte Carlo PROJET

PROJET [31] is a program which calculates jet cross sections in deep inelastic scattering with

the help of the numerical integration procedure VEGAS. It is based on perturbative QCD

predictions to O(�

2

s

) by D. Graudenz and describes jet �nal states with up to four partons.

3

The four vectors of the incoming and outgoing partons including the electron and the virtual

photon can be accessed via an event record.

The program integrates the (N+1)-jet cross sections (N = 1, 2, 3) in LO and the (N+1)-

jet cross section (N = 1, 2) in NLO, each for di�erent helicity states of the virtual photon.

The running of �

s

is implemented in LO and NLO. The running of �

em

is simulated also. In

order to compare di�erent PDF's PROJET can be linked to the PAKPDF library. The explicit

dependence on �

2

f

and �

2

is kept in the formulas and changes in the cross sections, due to

changes in the scales, can be inspected (cf. section 11.5.3).

The event selection of an experiment is simply a restriction in phase space. In this analysis

this will be done in terms of Lorentz invariant variables (Q

2

e

; y

e

; W

2

) and quantities measured

in the H1 laboratory system (#

e

; E

e

; #

jet

), or in the center of mass system p

?

t;jet

4

. In order

to have full exibility the same phase space restrictions can be chosen while integrating cross

sections with PROJET. The adaptation of PROJET to the needs of an experiment was done

together with the author as part of this work. With this feature the jet rates measured in

an experiment and corrected for detector e�ects, can be compared directly to integrated cross

sections.

As an example of the exibility in cross section calculations with PROJET �gure 5.1 shows

the various contributions to the jet cross sections for two phase space regions. The terms LO,

NLO in this �gure refer to the parts of the matrix elements taken into account, always using

the NLO PDF MRSD

�

and the 2-loop �

s

formula for �

4;MS

= 0:215 MeV . This shows how the

3

Especially no fragmentation is done and PROJET cannot be used as an event generator (cf. section 7).

4

All quantities measured in the center of mass system will be denoted by a (

?

).



5.1. SECOND ORDER CALCULATIONS 31

Figure 5.1: Di�erent contributions to the jet cross sections for W

2

> 5000 GeV

2

. The legend

denotes the curves from top to bottom, (tr) stands for transversal and (long) for longitudinal.

To take into account acceptance restrictions of the H1 detector (cf. section 9.1) the electron

kinematic variables are constrained further.

(a) 10 < Q

2

< 100 GeV

2

, 160

�

< #

e

< 172:5

�

and E

e

> 14 GeV .

(1+1) LO and �

tot

NLO are indistinguishable due to the logarithmic scale.

(b) 100 < Q

2

< 4000 GeV

2

, 10

�

< #

e

< 148

�

and y

e

< 0:7.

di�erent matrix elements are composed in a NLO cross section, it does not show the di�erence

of consistent jet cross section calculations in ep scattering, this question will be addressed in

section 5.1.2. Several observations can be made.

� The NLO coe�cient to the total cross section is negative and the relative change is

di�erent for the two phase space regions. It is almost invisible in (a) due to the logarithmic

scale and it depends on W

2

.

� The lower the y

c

value is the higher is the resolution power and more events are classi�ed

as (2+1)-jet events. At y

c

� 0:004 the (1+1)-jet and (2+1)-jet cross section to O(�

s

)

are of equal size in region (b), whereas in (a) this occurs at a lower y

c

value outside the

shown range.

� The NLO correction to the transversal part of the (2+1)-jet cross section changes sign

at y

c

� 0:015. Above it is positive, whereas below it is negative and approaches �1 for
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y

c

! 0. The cross over point, as well as the numerical value of this correction, is di�erent

in both phase space regions showing that there exists no simple 'k-factor' to account for

the NLO terms.

� In LO the longitudinal part of the (2+1)-jet cross section ranges from 6� 18% in region

(a) and from 17 � 26% in region (b). The longitudinal part to the NLO coe�cient of

the (2+1)-jet cross section is missing (cf. section 5.1). If one assumes that the relative

amount in NLO is as large as in the LO terms and restricts the analysis to the y

c

range

around 0.02 where the NLO correction to the transversal part is in the order of 20%, then

the missing part is expected to account for 2 � 4% of the total (2+1)-jet cross section.

� As indicated by the fast drop of the NLO part of the (2+1)-jet cross section at low y

c

integration will become instable and the results unreliable if one chooses y

c

in the low y

c

range.
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5.1.2 The importance of NLO cross sections

In section 3.3 the consistent prescription of LO and NLO jet cross sections is outlined. Now

the numerical importance in ep scattering is evaluated.

In comparing LO to NLO in various processes often two e�ects cancel each other. The NLO

coe�cient of �

s

is negative, �

s

decreases from LO to NLO, this may be compensated by taking

into account the NLO term in the perturbative series of the observable. Due to this cancellation

often the numerical di�erence between LO and NLO is small. In DIS, because of the structure

of the proton, the PDF's enter as a third component.

PDF Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

GRV(LO) �

tot

[pb] 15138 9813.9 8608.6 1445.0 584.2

�

2+1

[pb] 204.9 173.3 243.4 92.8 70.1

R [%] 1.4 1.8 2.8 6.4 12.0

GRV(NLO) �

tot

[pb] 17847 11007 9220.6 1444.7 590.4

�

2+1

[pb] 152.8 140.2 202.7 84.0 66.2

R [%] 0.9 1.3 2.2 5.8 11.2

Table 5.1: PROJET comparison of LO versus NLO cross sections. Used are the GRV parton

densities in LO/NLO, the corresponding matrix elements in LO/NLO and the LO/NLO formula

of �

s

for the �

2

4;MS

values quoted together with the PDF's. The jet cut is y

c

= 0:02. The Bins

in Q

2

are de�ned in table 9.2.

This is studied with the GRV parton density, which is available in LO and NLO, by using

the corresponding Matrix elements of PROJET and the �

4;MS

values which are quoted by the

authors together with the PDF. Table 5.1 contains the cross sections in the �ve Bins in Q

2

and

for y

c

= 0:02, within the phase space cuts of the analysis which will be discussed in section 9.1.

For the (2+1)-jet events the #

jet

and p

?

t;jet

cut (cf. section 10.2) are applied. The numerical

importance concerning the jet rate measurement is demonstrated in �gure 5.2 obtained from

table 5.1. The total cross section and the (2+1)-jets cross section change in di�erent directions

at this particular y

c

value (b). The total cross section increases from LO to NLO whereas the

(2+1)-jets cross section decreases, leading to a 6 � 37% change on the rate (c), while being

more important at lower Q

2

values. Besides the fact that �

s

is only well de�ned in NLO,

the di�erence of LO and NLO cross sections shows that the NLO correction is numerically

important and has to be included in the QCD prediction to get a meaningful QCD prediction

for the jet rates.
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Figure 5.2: The importance of NLO calculations. This plot is derived from the numbers given

in table 5.1. The lines connect the values of the integrated cross sections which are plotted at

the mean values of the bins. The cross section curves are not smooth due to the chosen binning.

(a) The R

2+1

jet rate as a function of Q

2

= �

2

at y

c

= 0:02.

(b) The individual contributions in LO and NLO.

(c) The ratio R

2+1

in NLO divided by the one in LO as function of Q

2

= �

2

.
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5.1.3 Contribution of quark and gluon initiated processes

Measuring the gluon PDF of the proton is of major interest because it is of great importance for

cross section predictions for p�p colliders, where gluon gluon scattering is an important process

giving a considerable contribution to the event rate e.g. at the planned Large Hadron Collider

(LHC). The information so far on the gluon density in the proton mainly comes from the

Altarelli Parisi splitting function, while �tting the PDF.

The (2+1)-jet cross section is composed of q and g initiated processes. One can choose two

approaches to evaluate the PDF for the gluons in the proton, either one needs to disentangle the

two processes and measure the gluon initiated part separately, or one takes the whole (2+1)-jet

cross section and subtracts the quark initiated part, with the knowledge of the measured quark

PDF's. The latter approach has the advantage that no quark/gluon jet separation is needed.

With this in mind the expected contribution of quark and gluon initiated processes for the

same event selection and jet requirements as in table 5.1 are shown in table 5.2, assuming two

di�erent parton densities.

PDF process Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

MRSD

�

�

2+1

[pb] 145.8 138.7 204.4 89.7 69.7

q initiated [pb] 28.6 28.9 50.2 33.0 40.5

g initiated [pb] 117.2 109.8 154.2 56.7 29.2

MRSD

�

�

2+1

[pb] 135.7 124.1 189.7 82.2 66.4

q initiated [pb] 28.4 28.3 50.1 32.1 40.1

g initiated [pb] 107.3 95.8 139.6 50.1 26.3

GRV �

2+1

[pb] 152.8 140.2 202.7 84.0 66.2

q initiated [pb] 27.0 27.0 48.6 30.9 38.8

g initiated [pb] 125.8 113.2 154.1 53.1 27.4

Table 5.2: Composition of of quark and gluon initiated processes in the �ve bins in Q

2

de�ned

in table 9.2, for y

c

= 0:02. The p

?

t;jet

and the #

jet

cut (cf. section 10.2) are applied.

At low Q

2

the gluon initiated processes are dominant, indicating that it would be preferable

to carry out a measurement in this region. At a somewhat higher Q

2

the quark initiated

processes are more important. The prediction of quark initiated processes however agree on a

two percent level throughout, allowing to subtract this contribution from the total measured

(2+1)-jet cross section. One expects around 50 events at the present Luminosity of L

int

=

0:4 pb

�1

for Bins 1,2 and 3, suggesting that a measurement with 14% statistical precision per

bin can be reached in this domain. With this method for y

c

= 0:02 one can measure the gluon

parton density in the proton for � > 10

�2

as can be seen from equation 6.8. In this work the
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gluon density will not be derived, the analysis concentrates on the measurement of �

s

, but it

can certainly be done in this framework.

5.2 Factorization and resummed calculations

Factorization of cross sections in terms of matrix elements and PDF's is already discussed

in section 3.3, now the 'factorization' of jet algorithms is addressed. Factorization in this

context means that the jet algorithm separates between the remnant fragmentation and the

hard subprocess.

As seen in e

+

e

�

annihilations one needs small x

�

values to �t �

s

in NLO, indicating impor-

tant higher order terms. However, it is a major task to compute the NNLO matrix elements. A

partly solution to this is the resummation of leading logarithmic contributions to all orders in �

s

and to match the resummed result to a NLO calculation. This adds the most important terms

of all orders to the QCD prediction and thereby reduces the renormalization scale dependence.

In order to apply this technique a basic feature of the observable is required, the possibility

of exponentiation. The exponentiation in turn needs the 'factorization'. For resummed calcu-

lations of jet cross section one needs 'factorization' for the matrix elements and for the used jet

de�nition. In DIS this is achieved if both are only functions of z = �=x and not of x alone. The

conventionally JADE algorithm depends onW

2

and therefore on x alone, thereby violating this

requirement. If one introduces Q

2

instead of W

2

as scale, as suggested in [25], one achieves

the 'factorization' property for the JADE algorithm. The k

t

algorithm also has this property,

it was constructed inspired by this property and therefore allows for resummed calculations to

be performed using this algorithm.

This type of 'factorization' is a basic ingredient of resummed calculations, not of QCD

as such. An algorithm, like the JADE algorithm, which properly absorbs the initial state

divergencies in the renormalized parton densities is well suited to derive perturbative QCD

predictions.
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Strategies to measure �

s

at HERA

The basic idea is to measure a quantity Y (Q

2

) experimentallywhich can be predicted by QCD as

implemented in PROJET with only one free parameter �

s

(Q

2

;�

2

). From the measured quantity

and the PROJET expectation one derives �

s

in bins of Q

2

namely �

s

(Q

2

k

) with k=1,...,n. This

gives n measurements of �

s

in one single experiment. By using the RGE of QCD, � can be

�tted to these �

s

measurements. Three di�erent quantities of this type will be discussed below,

followed by a short outline of the measurement which can be done via scaling violations in the

structure functions.

6.1 The jet rate ratio R

2+1

(Q

2

; y

c

)

R

2+1

(Q

2

; y

c

) is de�ned as the (2+1) jet cross section �

2+1

(Q

2

; �

s

; y

c

) to O(�

2

s

) divided by the

total cross section �

tot

(Q

2

; �

s

) to O(�

s

), which is independent of y

c

. For simplicity, in this

consideration, it is assumed that �

2

= �

2

f

= Q

2

.

The �rst step is the selection of the region of phase space in terms of global event quantities.

Then the jet criteria are de�ned

1

, and the cross sections for (1+1)-jets and (2+1)-jets can be

calculated, by integrating with PROJET, in the given Q

2

bins.

d�

tot

(Q

2

; �

s

) = d�

1+1

(Q

2

; �

s

; y

c

) + d�

2+1

(Q

2

; �

s

; y

c

) + :::

d�

1+1

(Q

2

; �

s

; y

c

) = d�

20

(Q

2

; �

s

) + d�

21

(Q

2

; �

s

; y

c

)

d�

2+1

(Q

2

; �

s

; y

c

) = d�

31

(Q

2

; �

s

; y

c

) + d�

32

(Q

2

; �

s

; y

c

)

Here d�

ij

(Q

2

; �

s

; y

c

) is the ((i-1) + 1) jet cross section to O(�

j

s

) in a given bin in Q

2

, for

example, d�

32

(Q

2

; �

s

; y

c

) is the (2+1) jet cross section to O(�

2

s

). If the bins are small so that

the variation of �

s

(Q

2

) in the bin is small, it can be approximated by the mean value in the

bin and the equations can be rewritten as.

d�

1+1

(Q

2

; �

s

; y

c

) = A

20

(Q

2

) + �

s

(Q

2

;�

2

) �A

21

(Q

2

; y

c

)

d�

2+1

(Q

2

; �

s

; y

c

) = �

s

(Q

2

;�

2

) �A

31

(Q

2

; y

c

) + �

2

s

(Q

2

;�

2

) �A

32

(Q

2

; y

c

)

The A

ij

(Q

2

; y

c

) are de�ned analog to the �

ij

(Q

2

; �

s

; y

c

) above. Dividing d�

2+1

(Q

2

; �

s

; y

c

) by

d�

tot

(Q

2

; �

s

) one gets the quantity R.

R

2+1

(Q

2

; y

c

) =

d�

2+1

(Q

2

; �

s

; y

c

)

d�

tot

(Q

2

; �

s

)

1

This may be, for example, acceptance regions in the laboratory system #

min

� #

jet

� #

max

, or a minimum

transverse momentum p

?

t;jet

for the two hard jets in (2+1) jet events in the center of mass system. The actual

cuts will be described in section 10.1.

37



38 CHAPTER 6. STRATEGIES TO MEASURE �

S

AT HERA

=

�

s

(Q

2

;�

2

) �A

31

(Q

2

; y

c

) + �

2

s

(Q

2

;�

2

) �A

32

(Q

2

; y

c

)

A

20

(Q

2

) + �

s

(Q

2

;�

2

) �

h

A

21

(Q

2

; y

c

) +

~

A

31

(Q

2

; y

c

)

i

(6.1)

By introducing

~

A

31

(Q

2

; y

c

) one accounts for the possibility to have additional jet requirements in

d�

2+1

(Q

2

; �

s

; y

c

) compared to d�

tot

(Q

2

; �

s

). For example, if one asks for a minimum p

?

t;jet

in the

(2+1)-jet events the event counts in d�

tot

(Q

2

; �

s

), even if it fails this cut for d�

2+1

(Q

2

; �

s

; y

c

).

The total cross section is calculated only to O(�

s

), however R

2+1

(Q

2

; y

c

) is correct to O(�

2

s

)

as can be seen by a Taylor expansion. Skipping the arguments one gets

R

2+1

(Q

2

; y

c

) =

�

s

A

31

+ �

2

s

A

32

A

20

+ �

s

(A

21

+

~

A

31

)

= �

s

A

31

A

20

"

1 +

 

A

32

A

31

�

A

21

+

~

A

31

A

20

!

�

s

+O(�

2

s

)

#

(6.2)

Inverting equation 6.1 one gets a formula for �

s

as function of the coe�cients and the ratio

R

2+1

(Q

2

; y

c

).

�

s

(Q

2

) = F

h

A

ij

(Q

2

; y

c

); R

2+1

(Q

2

; y

c

)

i

(6.3)

= �

g � h �R

2+1

(Q

2

; y

c

)

2

�

s

(g � h �R

2+1

(Q

2

; y

c

))

2

4

+ f �R

2+1

(Q

2

; y

c

)

with :

f =

A

20

A

32

; g =

A

31

A

32

; h =

A

21

+

~

A

31

A

32

(6.4)

A measured R

2+1

(Q

2

; y

c

) in the experiment can be translated via equation 6.4 into a measure-

ment of �

s

(Q

2

).

The strategy is to measure R

2+1

(Q

2

k;e

; y

c

) at di�erent Q

2

k

, translate it to �

s

(Q

2

k

), and mini-

mize the �

2

of the measurement and the expectation as a function of the only free parameter

�

2

n

f

;MS

.

�

2

(�

2

n

f

;MS

) = min

N

X

k=1

�

�

s

(Q

2

k

)� �

s

(Q

2

k

;�

2

n

f

;MS

)

�

2

[� [�

s

(Q

2

k

)]]

2

(6.5)

Where �

s

(Q

2

k

;�

2

n

f

;MS

) is the 2-loop formula (cf. equation 2.5) and � [�

s

(Q

2

k

)] the experimental

error. The error propagation is as follows.

�

h

�

s

(Q

2

k

)

i

=

@�

s

(Q

2

k

)

@R

2+1

(Q

2

; y

c

)

� dR

2+1

(Q

2

; y

c

)

=

0

@

h

2

�

2f � h(g � h �R

2+1

(Q

2

; y

c

))

4 �

q

(g�h�R

2+1

(Q

2

;y

c

))

2

4

+ f �R

2+1

(Q

2

; y

c

)

1

A

� dR

2+1

(Q

2

; y

c

)(6.6)

In this scheme �

s

(Q

2

) is measured at k di�erent scales in one experiment and one does not

have the problem of combining experiments with di�erent systematic uncertainties.
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6.2 The di�erential jet rate D

2

(y

c

)

Another useful variable to measure �

s

is the di�erential jet rate D

2

(y

c

) [32] which is de�ned as

D

2

(y

c

) = R

2+1

(y

c

)�R

2+1

(y

c

+�y

c

) (6.7)

D

2

(y

c

) is essentially the number of events which ip from a (2+1)-jet con�guration to a (1+1)-

jet con�guration in a given interval �y

c

of the jet resolution parameter y

c

. Here, in contrast

to [32] it is scaled by the total number of events. The di�erential jet rates of the higher jet

multiplicities D

3

(y

c

) and D

4

(y

c

) are de�ned analogously.

D

3

(y

c

) = R

3+1

(y

c

)�R

3+1

(y

c

+�y

c

) +D

2

(y

c

)

D

4

(y

c

) = R

4+1

(y

c

)�R

4+1

(y

c

+�y

c

) +D

3

(y

c

)

This quantity has the desired feature that the points in the D

2

(y

c

) distribution are not corre-

lated, and therefore it allows to �t the shape and not only the value at a particular y

c

point as

one does if one uses the R

2+1

(Q

2

; y

c

) distribution (cf. section 6.1). This quantity is frequently

used at LEP to measure �

s

. It was seen at LEP that in the low y

c

region this distribution is

not well described by �xed order calculations to O(�

2

s

). This improves by adding higher order

terms in the framework of resummed calculations (cf. section 5.2), allowing �

s

to be derived

with a smaller theoretical error [33] and with x

�

values close to unity. Unfortunately the low y

c

region is the one with the highest statistics. With increasing y

c

the statistics is reduced rapidly.

With the present statistics this measure will not be considered, only the feasibility of such a

measurement will be shown in section 11.3.

6.3 R

2+1

(Q

2

; y

c

) versus the (2+1)-jet cross section

The next measure discussed here is the (2+1)-jet cross section. Inserting equations 3.7 and 5.1

in equation 3.9 one derives a relation between y

c

and �.

� = x � (1 +

ŝ

Q

2

) = x � (1 +

y

c

W

2

Q

2

) = x+ y

c

� (1� x) = y

c

+ x � (1� y

c

) (6.8)

From this it can be seen that for the (2+1)-jet events the PDF is evaluated at � > y

c

. For

y

c

� 0:02 this is a region where the PDF's are constrained by measurements (cf. �gure 3.8)

whereas for the (1+1)-jet events ŝ ! 0 and � ! x, which can be much smaller than 10

�2

(cf. �gure 9.1). This means normalizing the (2+1)-jet fraction to the total number of events

introduces a systematic uncertainty due to the unknown PDF function at low � values. This

uncertainty can be circumvented by only considering the (2+1)-jet cross section. The drawback

here is that one needs to know precisely all e�ciencies, which in the case of using R

2+1

(Q

2

; y

c

)

mostly cancel. The event selection relies mainly on the electron, consequently quantities like

electron trigger e�ciency and detection e�ciency cancel out. There is also no uncertainty on

the luminosity in R

2+1

(Q

2

; y

c

) which at present is around 7% for the 1993 data sample. The

way to overcome this is to restrict � to the region where the PDF's are well constrained and to

use R

2+1

(Q

2

; y

c

) (cf. section 11.5).

In this study, for the reasons mentioned above, the (2+1)-jet jet cross section will not be

considered as a measure for �

s

, although it may be the prefered one at a later stage, when the

e�ciencies and the luminosity are understood more accurately. To illustrate the method the

(2+1)-jet cross section is shown in section 11.4, using a simple model of unit e�ciencies (cf.

table 11.2).
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AT HERA

6.4 Scaling violations in structure functions

The last method described is the evaluation of �

s

from scaling violations in structure functions.

This is a di�erent type of method which does not rely on jet cross sections.

QCD predicts the evolution of structure functions analogous to the discussed prediction of

the PDF's (cf. equation 3.18). The measurement of the slope of the structure function evolution

with �

2

is a measurement of �

s

.

dF

d log(�

2

)

� �

s

(�

2

) (6.9)

The �

s

measurements (DIS [�],DIS [�] in tab 2.1) are of this type. An example of a recent

measurement from the NMC Collaboration can be found in [34].

At HERA there exists the possibility the measure �

s

from jet �nal states and from scaling

violations of structure functions. The advantage of HERA compared to the earlier experiments,

for example NMC, is the much higher momentum transfer Q

2

, and consequently �

2

, probed

at HERA, leading to smaller uncertainties due to non perturbative e�ects (cf. section 2.2).

This gives a unique possibility to solve the outstanding puzzle mentioned in section 2.2 that �

s

values derived from scaling violations are somewhat smaller than those obtained from hadronic

�nal states. This is a future task and is not covered in this work.



Chapter 7

The machinery to generate DIS events

This section deals with the properties of event generators as they are used in the H1 collabora-

tion [46]. Only the main features are considered, the details can be found in the corresponding

manuals.

The general procedure is as follows. The starting point are the matrix elements to a given

order, either O(�

o

s

) or O(�

s

). An alternative approach to simulate QCD Compton events is

the colour dipol model (CDM). In this model the gluon is radiated from a dipol built up of the

quark and the proton rest, a diquark. After this, softer emissions of gluons may be simulated by

leading logarithmic (LL) approximations to all orders in �

s

called parton showers (PS or LLPS),

or by subsequent emissions in the framework of the CDM. The partonic �nal state of quarks

and gluons will be fragmented, either by cluster fragmentation or lund string fragmentation,

resulting in the hadronic �nal state. The various event generators di�er in the choices made

for the steps described above, and if they include radiative corrections on the electron arm or

not.

The radiative corrections are photon emissions from the electron, either in the initial state

or in the �nal state, and virtual corrections at the e ! e

0

 vertex. All these corrections

are simulated in HERACLES [35], which calculates cross sections but does not simulate the

hadronic �nal state. To overcome this HERACLES can be combined with LEPTO52 [36].

This combination results in a generator called DJANGO10 [37]. Due to technical reasons, in

this con�guration LEPTO52 can only be operated with matrix elements to O(�

o

s

), followed by

parton showers. For this analysis of main interest are the matrix elements in order to derive

a basic physical quantity �

s

, therefore DJANGO10 will not be considered in detail. Another

generator which is operated in H1 with O(�

o

s

) matrix elements followed by parton showers

is HERWIG55 [38]. The parton shower evolution is treated di�erently in HERWIG55 and

LEPTO61 [39] (see below). A second conceptual di�erence is that HERWIG55 uses cluster

fragmentation and LEPTO61 the lund string fragmentation, which is simulated using JET-

SET73 [40]. This opens the possibility to study the subtleties of PS and fragmentation, but it

will not be discussed here in details.

The CDM model implemented in ARIADNE [41] can be used together with LEPTO61. In

this combination LEPTO61 matrix elements account for the BGF process while ARIADNE is

used to simulate the QCDC events.

All these generators, or combinations of generators, are of limited use for the purpose of

this investigation. An event generator is needed only to evaluate correction factors to allow the

measured jet rates to be related to the jet rates on parton level, which then will be compared

to the 'real' QCD predictions of PROJET. The ideal thing to use would be an event generator

41
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with matrix element to O(�

2

s

) followed by parton showers. The model which comes closest to

this at the moment is LEPTO61 used in the option where it simulates the matrix elements

O(�

s

) followed by parton showers to account for softer radiations. It will be used for this task.

This model will be called MEPS from now on, LEPTO61 with matrix elements O(�

s

) alone is

abbreviated to ME. Because LEPTO61 is the favourite generator it will be discussed in more

details in the next section.

7.1 LEPTO61

LEPTO61 is an event generator based on the LO electroweak cross section for  and Z

�

ex-

change. It includes QCD corrections using the matrix elements to O(�

s

) and higher orders in a

LLPS approach. No QED corrections at the electron arm are included. Fragmentation is done

in the framework of the lund string model.

7.1.1 Hard matrix elements

LEPTO61 simulates the leading order process and the BGF and QCDC process to O(�

s

). In

the terminology of the LEPTO program these processes are called q, q�q and qg events refering

to the outgoing partons. In order to save computing time, during the initialization phase of the

program it evaluates a probability table for the di�erent event types on a grid in (x; W

2

) in

the following way. The three additional degrees of freedom

1

for the BGF and QCDC process

are integrated out, to derive the di�erential cross sections d

2

�=dx � dQ

2

for q�q and qg events.

To get the probabilities P

q�q

and P

qg

these di�erential cross sections are scaled by the overall

di�erential cross section (d

2

�=dx � dQ

2

)

tot

, which is available to O(�

o

s

) and to O(�

s

) in the DIS

scheme. The probability for q-events is obtained by probability conservation.

P

q

= 1� P

q�q

� P

qg

(7.1)

The BGF and QCDC cross sections depend strongly on the minimum y

c

up to which the

integration is performed. y

c

can be steered, as well as the minimal absolute invariant mass

of any parton pair m

2

ij

2

. One wants to generate as many events as possible according to the

O(�

s

) matrix elements in order to get the appropriate �nal state, however, the problem is

that the matrix element diverges for low y

c

values, resulting in a negative probability for the

LO process. The program solves this by increasing internally y

c

if needed in order to keep P

q

above 10%. As a consequence of this the actual y

c

values may change from point to point in

phase space, indicating that one has to be careful while comparing LEPTO to an analytical

calculation. This grid is stored and used during event generation.

The event generation is usually done according to (d

2

�=dx � dQ

2

)

tot

in (x; Q

2

) space. At

any (x; Q

2

) point the type of event is chosen by linear interpolation in the (x; W

2

) probability

grid. If an O(�

s

) event is generated the three degrees of freedom are chosen according to the

�ve fold di�erential cross sections.

1

Because there are two outgoing partons from the hard subprocess instead of one in the LO process three

additional degrees of freedom are present in the BGF and QCDC process. They can be chosen as two angles

and the energy of one parton, the other parton is then �xed by momentum conservation.

2

Parameters PARL(8), PARL(9) in LEPTO61 with the default values 0.015, 2.0 GeV .
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7.1.2 Leading logarithmic parton showers LLPS

The matrix elements, calculated for massless quarks, govern the jet cross sections, on top of

this the event topology is changed by the parton showers which treat the partons as o�shell.

The PS approach has been developed to simulate arbitrarily high orders in �

s

because the

multijet rate in e

+

e

�

annihilations was not properly described by the second order matrix ele-

ment approach, which accounts for at most four partons in the �nal state (FS). This multiparton

approach also gives a better description of jet properties, such as hardness or width of jets for

e

+

e

�

interactions. In e

+

e

�

scattering quarks and gluons only occur in the �nal state, with

timelike virtualities m

2

> 0. A strategy to perform the FSPS was developed and implemented

in the subroutine LUSHOW of JETSET73, which has been well tuned to e

+

e

�

data.

In DIS the incoming parton from the proton side is a quark or gluon and consequently there

exist an initial state parton shower (ISPS) with space like virtualities m

2

< 0. In the pure PS

approach one starts from the QPM process and on top of this both the ISPS and FSPS are

evolved by subsequent branchings controlled by the Altarelli Parisi splitting kernels. To explain

the features of PS a 'chronological' picture (cf. �gure 7.1) of the PS evolution is helpful.

p

e

e’

p1

p2
r1

r2

rn
s1

s2

pn

pn+1 t1
t2 t3

t4

tn

pm

Figure 7.1: Parton shower evolution in an ep scattering event.

Starting from a quark in the proton which is close to onshell, branchings take place which

decrease the virtuality of the quark (0 > m

2

p

1

> ::: > m

2

p

n

), it becomes more and more spacelike.

The radiated daughters (r

1

::: r

n

) are either onshell or have timelike virtualities which in turn

will result in a timelike shower (s

1

::: s

n

). When the quark (p

n

) is hit by the photon it will be



44 CHAPTER 7. THE MACHINERY TO GENERATE DIS EVENTS

turned to onshell or to a timelike virtuality m

2

p

n+1

� 0. It radiates partons (t

1

::: t

n

) thereby

decreasing it's virtuality until m

2

p

m

� p

2

0

� 1 GeV

2

, at which point it enters the fragmentation

region, and the PS is stopped. In the FSPS branchings angular ordering is taken into account

which leads to decreasing opening angles for (t

1

::: t

n

). The probability for each branching is

ruled by the Sudakov form factor derived from the Altarelli Parisi equation by integrating the

no branching probability over the changes in virtuality. Technically the ISPS is done in a

backward evolution scheme, one starts from the photon vertex and constructs the ISPS down

to the proton. The cross section is governed by the x value as seen by the electron and the ISPS

is constructed with unit probability. It can be looked at as a 'snapshot' of a speci�c uctuation

state of the proton which is in agreement with the Altarelli Parisi evolution equation. ISPS

must be included in an event generator to simulate properly the partons generated by the ISPS,

which may be seen in a detector. When combining ISPS and FSPS special precautions are taken

to preserve the kinematic variables at the photon vertex, especially the x value as seen from

the electron arm. One shortcoming of the separate evolution is the fact that no interference

terms between ISPS and FSPS are taken into account, thereby violating the gauge invarianz.

To complete the procedure two choices have to be made. First one has to de�ne the argument

in �

s

(�

2

) which is set to �

2

= p

2

t

� (1� z)Q

2

for ISPS and to �

2

= p

2

t

� z(1� z)m

2

max

in FSPS.

The second choice is the value of the maximum allowed virtualitym

2

max

, which is the crucial

parameter in PS. It can not be �xed by �rst principles in QCD, only recipes exist how to �x

this ambiguity. Those have to be checked against data. It has been argued [42] that the mean

transverse momentum hp

2

t

i is proportional to W

2

for x > 0:01 and thereforeW

2

is the preferred

scale, on the other hand the fundamental parameter in matrix elements is Q

2

. For small x it

followsW

2

� Q

2

and the proton remnant P

r

with P

r

= (1��)P takes a lot of the availableW

2

,

but it does not radiate because according to the spectator model it is treated onshell. Due to

this, taking W

2

as the scale of maximum virtuality will overestimate the amount of radiation.

A way round this problem is the choice of m

2

max

= Q

2

(1� x)max(1; log

1

x

). This takes into

account the limites of hp

2

t

i for (x! 1; x! 0) and is the actual default choice in LEPTO61.

Because the PS is a leading logarithmic approximation it is expected to simulate properly

the soft and collinear emissions. However, the emissions of high energetic partons or emissions

at large angles are wrongly treated because the approximation runs out of it's validity range,

in particular hard jets generated by LLPS should be treated with special precaution.

A natural improvement is to use the matrix elements O(�

s

) for the hard emissions and use

LLPS on top of that to account only for the softer part. This needs a matching procedure of

the matrix elements to the LLPS to get a smooth transition, which is the subject of the next

section.

7.1.3 Matching �rst order matrix element to LLPS

The main task in matching matrix elements to parton showers is to get a smooth transition

between ME and PS. If there is an overlap in phase space this will lead to double counting.

Double counting denotes the fact that an emission which was rejected on the ME level by the

P

ij

(cf. equation 7.1) is generated through PS afterwards. In order to avoid this, m

2

max

must

be determined event by event from the matrix element.

The FSPS is performed by LUSHOW. The procedure for the ISPS performed in LEPTO61

is the following. If an O(�

o

s

) event is chosen according to equation 7.1, then no radiation,

leading to an invariant mass squared of any two partons larger than y

c

�W

2

, is generated by

ME and PS is not allowed to do so either, y

c

�W

2

is the choice for m

2

max

. For O(�

s

) events the
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situation is more complex. The m

2

max

is chosen as the virtuality of the parton which is hit by

the photon before this interaction, however, for instance, in a BGF event it is not clear whether

the q or �q was hit by the photon. The two possibilities lead to the same �nal state they are

indistinguishable and according to the Feynman rules they are added on amplitude level to get

the matrix element. If one works out the values of the invariant masses for the two cases using

four vector arithmetics one sees that often they are numerically very di�erent. This ambiguity

is solved in LEPTO using the maximum of the two choices, unless the result is bigger than

(m

2

ij

+ Q

2

=2). This is a possible solution to the problem, however it must not be the ultimate

one. To choose the minimum of the two invariant masses as the scale of maximum virtuality

is a valid choice as well. The cross section even diverges if this internal line is onshell, so it

should happen frequently that it's invariant mass is small.

The importance of that will be addressed later, when the jet requirements of this analysis

are de�ned (cf. section 10.2).

7.2 Comparison of PROJET with LEPTO

PROJET and LEPTO61 are used in parallel, so it is natural to compare those parts of PROJET

which are included in LEPTO61 as well. For comparison shown are the LO contribution to �

tot

and the (2+1)-jet cross section using the ME option in LEPTO61 with MRSD

�

as PDF. For

LEPTO61 200.000 events per bin are generated, the total cross section is taken as the value

obtained from the numerical integration of the initialization step of the program, the (2+1)-jet

cross section in turn is derived from the relative number of generated events

3

. The PROJET

cross sections are integrated with an accuracy better than 1%. These are not consistent jet

cross sections, in terms of LO or NLO jet cross sections as discussed in section 3.3, but they

only serve as a technical consistency investigation in order to see whether the parts of the

matrix elements included in both programs agree. To avoid the heavy avour threshold factors

in LEPTO61 integration is done for four avours only. Special precaution is necessary because

all relevant parameters have to be steered properly

4

, especially the chosen formula to evaluate

�

s

is the crucial point here. Table 7.1 shows the comparison for the �ve bins in Q

2

discussed in

section 9.2. An agreement in the order of 1% in di�erent kinematic regions is achieved. The

phase space restriction is based on electron variables and variables concerning the hadronic �nal

state. The jet rates are evaluated for two y

c

values, y

c

= 0:02 and 0.03. This valuable cross check

shows that the restrictions in phase space made while integrating in PROJET and LEPTO61

are the same, giving the con�dence that phase space integration is correctly implemented in

both programs. In addition the common parts of the matrix elements are found to give the

same y

c

dependence of the (2+1)-jet cross sections. This agreement is the justi�cation to use

LEPTO61 to perform the correction from the detector level to the parton level.

3

In LEPTO61 the cross section is stored in PARL(23) and the event type can be accessed by LST(24).

4

The following parameters are chosen di�erent from their default values. LST(7)=0, LST(13)=4, LST(18)=1,

PARL(3)=0, PARL(9)=0.001, PARL(15)=0.005, MSTU(112)=4, MSTU(114)=4, PARU(112)=0.2
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PDF process Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

LEPTO61 �

tot

[pb] 13059 7954.6 7003.8 1316.0 582.0

y

c

= 0:02 �

2+1

[pb] 364.6 323.8 470.3 142.0 109.7

QCDC [pb] 102.6 93.1 152.7 65.9 72.6

BGF [pb] 262.0 230.7 317.7 76.1 37.2

y

c

= 0:03 �

2+1

[pb] 185.4 165.0 244.1 82.3 68.9

QCDC [pb] 54.5 51.5 81.9 39.5 45.7

BGF [pb] 130.9 113.5 162.1 42.8 23.2

PROJET �

tot

[pb] 12956 7906.1 6980.5 1299.2 574.6

y

c

= 0:02 �

2+1

[pb] 363.8 326.3 460.9 140.2 109.6

QCDC [pb] 98.5 92.1 146.4 64.5 72.6

BGF [pb] 265.3 234.2 314.5 75.7 37.0

y

c

= 0:03 �

2+1

[pb] 185.0 166.9 243.9 81.1 68.9

QCDC [pb] 55.7 51.8 82.8 38.1 45.9

BGF [pb] 129.3 115.1 161.1 43.0 23.0

Table 7.1: Comparison of LO contributions to cross sections for LEPTO61 and PROJET for

di�erent y

c

values. The bins are de�ned in table 9.2. For more explanations see text.



Chapter 8

HERA and the H1 Detector

HERA, the 'Hadron Elektron Ring Anlage' shown in �gure 8.1, is situated at DESY in Hamburg,

Germany. It has a circumference of 6.3 km. In HERA electrons of momentum 26.7 GeV collide

with 820 GeV protons. To cope with the high momentum of the proton and to operate the

electron and proton accelerators at the same radius, meaning in the same tunnel, one needs

strong magnetic �elds. The proton accelerator is built with superconducting magnets (B =

4.68 T). The particles are grouped in bunches separated by 96 ns. In the 1993 operation period

Figure 8.1: The HERA accelerator.

84 bunches of each type were made to collide

1

. Typical currents of 14 mA for the proton

beam and 12 mA for the electrons have been achieved leading to a typical speci�c luminosity

of 500 mb

�1

s

�1

mA

�2

. In 1993 HERA delivered � 1 pb

�1

integrated luminosity, and the H1

1

The design values for the bunch lengths of the electron and proton beams are 11 cm and 0.8 cm respectively.

47
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experiment collected � 0:4 pb

�1

of data with all relevant detector components operated under

normal conditions.

A detailed discussion of the H1 apparatus can be found elsewhere [43]. Here emphasis is

put on describing the main features of the components of the detector relevant to this analysis,

which mainly makes use of the calorimeters, and to a lesser extent the central and backward

tracking systems. The description proceeds from the interaction point outward, always refering

to the abbreviations in �gure 8.2 which shows a sketch of the main components of the H1

detector. The inner part of the detector is �lled with the central tracking chamber (CT)

THE  H1  DETECTOR

Figure 8.2: The H1 detector.

supplemented by a forward tracking detector (FT) and a backward multiwire proportional

chamber (BPC or MWPC), covering the polar angle ranges 25

�

< # < 155

�

, 7

�

< # < 25

�

and

155

�

< # < 175

�

, respectively. These sub-detector devices are used to determine the vertex

position, which is within the range of �50 cm around the nominal interaction point, due to the

bunch lengths mentioned earlier. The BPC, together with the vertex, is used to measure the

electron scattering angle in the backward region. The achieved angular resolution is about 6

mrad.

The scattered electrons and the hadronic energy ow are measured in a liquid argon (LAr)

calorimeter and the backward electromagnetic lead-scintillator calorimeter (BEMC). Leaking

hadronic showers are measured in a surrounding instrumented iron system housed in the return

yoke of the superconducting solenoid. The solenoid is outside the LAr calorimeter and provides
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a uniform magnetic �eld of 1:15 T parallel to the beam axis in the tracking region.

The LAr calorimeter [44] extends over a polar angle range from 4

0

< # < 153

0

with full

azimuthal coverage. The calorimeter consists of an electromagnetic section (EMC) with lead

absorbers, corresponding to a depth of between 20 and 30 radiation lengths and a hadronic

section (HAC) with steel absorbers. The total depth of the LAr calorimeter varies between 4.5

and 8 hadronic interaction lengths. The calorimeter is highly segmented in both sections with

a total of around 45000 geometric cells. The electronic noise per channel is typically in the

range 10 to 30 MeV (1 � equivalent energy). The energy reconstruction method is described

in [43, 45]. Testbeam measurements of LAr calorimeter modules have shown energy resolutions

of �(E)=E � 0:12=

q

E /GeV � 0:01 for electrons and �(E)=E � 0:5=

q

E /GeV � 0:02 for

charged pions [43, 45]. The hadronic energy scale and resolution have been veri�ed from the

balance of transverse momentumbetween hadronic jets and the scattered electron in DIS events

and are known to a precision of 5% and 20% respectively. The uncertainty of the absolute scale

for electrons is at the level of 3%.

The BEMC, with a thickness of 22 radiation lengths, covers the backward region of the de-

tector, 151

�

< # < 177

�

. It is mainly used to trigger on and to measure electrons scattered from

DIS processes at low Q

2

. The acceptance region corresponds to Q

2

values in the approximate

range 5 � Q

2

� 100 GeV

2

. A resolution of �(E)=E � 0:10=

q

E /GeV with a constant term of

3% has been achieved. By adjusting the seen electron energy spectrum to the kinematic peak

2

,

the BEMC energy scale is known to an accuracy of 1:7%.

A scintillator hodoscope situated behind the BEMC is used to veto proton-induced back-

ground events based on their early time of arrival compared to that of the nominal electron-

proton collision.

A luminosity detector measuring the reaction e p! e

0

 p is placed in the backward direction

with components at z = �33 m to tag electrons (ET) scattered through angles below 5 mrad

with respect to the electron beam direction and at z = �100 m to measure photons (PD).

Each component consists of a crystal calorimeter with an energy resolution of �(E)=E �

0:10=

q

E /GeV

2

As can be seen from �gure 3.2 there exists a large region of phase space where the energy of the scattered

electron is close to the energy of the incident electron, this is called the kinematic peak.
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Trigger and Event Selection

The analysis is split into two data samples depending on if the scattered electron is detected in

the BEMC or the LAr calorimeter. The event selection is similar to the one discussed in [46],

with some additional requirements.

Selecting DIS events is based as much as possible on quantities measured by the electron in

order not to bias the hadronic �nal state to speci�c jet con�gurations. The electron should be

well contained in the calorimeters. The matching of data samples is done via bins in Q

2

(cf.

�gure 9.1). The BEMC sample is restricted to the range 10 � Q

2

� 100 GeV

2

, the LAr sample

to Q

2

> 100 GeV

2

. The distribution of the events in the (x

e

; Q

2

e

) plane is shown in �gure 9.1.

A typical event from both samples is shown in �gure 9.2 for the BEMC sample and 9.3 for the

LAr sample. These events are subject to the jet analysis.

9.1 Electron identi�cation and data samples

This section �rst describes the common requirements, then the selection of the BEMC sample,

and �nally the LAr sample.

The common requirements are

� an event vertex within �50 cm in z from the nominal interaction point

� W

2

> 5000 GeV

2

calculated using the double angle method [14]. The W

2

cut for low Q

2

is equivalent to a lower y cut (cf. equation 3.7), ensuring that the radiative corrections are

strongly suppressed. In addition it ensures a large invariant mass of the hard subsystem

ŝ > 100 GeV

2

for (2+1)-jets at y

c

> 0:02. This method relies on the angle of the scattered

electron and the angle of the total hadronic system and not on the details of the jet �nal

state.

The electron for the BEMC sample is selected as follows. The electron requires

� an electromagnetic cluster in the BEMC, matching with a space point in the BPC, in the

range 160

�

< #

e

< 172:5

�

� the center of gravity of the electron cluster to have jxj or jyj > 14 cm to be well inside

the BEMC, avoiding the inner triangular stacks of the BEMC

� a momentum transfer measured by the electron Q

2

e

between 10 and 100 GeV

2

50
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Figure 9.1: H1 data event distribution in the (x

e

; Q

2

e

) plane. The impacts of the kinematic cuts

described in chapter 9.1 can be seen by comparing to �gure 3.2.

� an energy E

e

> 14 GeV corresponding to y

e

<

�

0:5, to eliminate possible background from

photoproduction.

With these requirements the trigger e�ciency is > 99% [47].

In the LAr sample the scattered electron is mainly selected using the kinematic fact that

the electron has to balance the hadronic system. The transverse momentum of the initial

beam particles e and p vanishes. This leads to a balance of transverse momentum between

the electron and the hadronic �nal state, and so the electromagnetic cluster with the highest

transverse momentum is likely to be caused by the electron.

In order to reduce faked electrons caused by non DIS events some additional features for

these clusters are required. These background events are mainly cosmic muons which shower

in the LAr calorimeter or muons accompanied with the proton beam, called halo muons. Their

showers mostly do not originate at the inner edge of the EMC and they do not point to the

vertex. This means, these events have very di�erent shower pro�les compared to showers

produced by electrons originating from the event vertex. This di�erence enables the isolation

cuts, described below, to be obtained.

� Q

2

e

> 100

� y

e

< 0:7 to reduce the photoproduction background
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Figure 9.2: A H1 data event with the electron scattered in the BEMC calorimeter.

� 10

�

< #

e

< 148

�

to contain the cluster in the LAr calorimeter and to avoid the transition

region between LAr and BEMC

� in a cone of 5

�

half opening angle around the direction of the electron no muon track is

allowed in the instrumented IRON system

� the electron must not be near to an acceptance hole in the azimuthal coverage of the

LAr calorimeter

� the energy deposited in the EMC in a cylinder of radius 15 � r � 30 cm around the

electron direction must be below 1.2 GeV to ensure that the electron is isolated. The

energy in the HAC within 30 cm around the electron direction must be less than 0.5 GeV .

In this sample the trigger e�ciency is > 97%.

To demonstrate the purity of the LAr sample �gure 9.4 shows several control distributions,

namely the energy found in the electron tagger (ET) (a), the value of the total (E � P

z

)

tot

of

the event (b), the energy of the most energetic cluster in the BEMC (c) and the distribution

of the z coordinate of the vertex position (d). Compared are the H1-data to the prediction of

MEPS for the LAr sample after the event selection described above. The events with energy in

the ET are found to be overlay events, where in addition to a DIS event also a Bremsstrahlungs

event from the electron beam occurs. The Bremsstrahlung events have a large cross section
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Figure 9.3: A H1 data event with the electron scattered in the LAr calorimeter.

and are usually used to measure the luminosity (cf. section 8). The number of overlay events

of this type roughly agrees with that expected from the cross sections involved. Most of them

have also the Bremsstrahlungs photon detected in the PD. These events are not simulated by

MEPS. They do not disturb the measurement of the DIS events and remain in the sample.

The (E � P

z

)

tot

expectation is twice the initial electron energy predicted by momentum

conservation and the distribution (b) peaks around this value. The tail at high values of

(E � P

z

)

tot

is produced mainly due to resolution e�ects, while that at low (E � P

z

)

tot

values

is caused by not seen particles due to the imperfect coverage of the detector. This may occur

in DIS events, however, it also indicates possible background from photoproduction, where the

scattered electron escapes unseen in the incoming electron beam direction (- z). This results

in a loss of the measured (E � P

z

)

tot

with almost twice the electron energy. The distribution

is reasonably well described by MEPS with a small additional tail in the data distribution,

indicating a tiny background from photoproduction. This can happen if an electromagnetic

cluster, from the hadronic �nal state, is misidenti�ed as an electron.

Another type of dangerous background event is a DIS event with a wide angle Brems-

strahlung in the �nal state. This leads to two isolated clusters from the electron and the

photon. These events may lead to an additional jet, caused by the isolated cluster. These

radiative events are not simulated by MEPS (cf. section 7.1) and also not by PROJET. A

typical signature of such an event is an additional high energy cluster in the BEMC. They
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Figure 9.4: Data quality distributions for the LAr sample, after the event selection of section 9.1.

The H1 data are the points with error bars, the histogram is the MEPS prediction normalized

to the same number of events.

(a) Energy in the electron tagger E

tag

. (no entry for MEPS, see text)

(b) The total (E � P

z

)

tot

of the event.

(c) Energy of the most energetic cluster in the BEMC E

max

.

(d) The z coordinate of the event vertex z

vtx

.

are eliminated by rejecting those events where the energy of the most energetic BEMC cluster

is above 10 GeV . This cut also eliminates background from low Q

2

DIS events, where the

scattered electron is in the BEMC and an electromagnetic part of the hadronic �nal state is

misidenti�ed as electron in the liquid argon. Such events must be e�ciently suppressed, as the

cross section is much higher than the cross section for events with the electron scattered in the

LAr calorimeter.

The distribution of the z vertex coordinate agrees for data and Monte Carlo, however there

is a small shift in the peak position. This is more a consistency check of the Monte Carlo than

of the data, because the input distribution for the z vertex coordinate used in the Monte Carlo

was derived from H1 data.

For the LAr sample, in addition to the event selection, it is required.

� 30 < (E � P

z

)

tot

< 70 GeV
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� E

max

< 10 GeV

This eliminates 46 events and after this the remaining background is smaller than 1%. The

background in the BEMC sample is negligible due to the E

e

> 14 GeV cut [19].

In summary, after all the cuts described above 13641 events in the BEMC sample and 877

events in the LAr sample remain. From the events in the LAr sample 12 have a Q

2

value bigger

than 4000 GeV

2

.

9.2 Determination of kinematic quantities

To rely on the event selection detailed above, it has to be shown that the object found is indeed

the electron, that the kinematic variables are derived with su�cient accuracy, and that the

event generator used to evaluate these estimates describes the data reasonably well. This is

done as follows, using MEPS with MRSD

�

as PDF.

Figure 9.5 shows the correlation of the scattering angle and of Q

2

for the generated and

reconstructed electron in the BEMC sample, (a, b), and the LAr sample, (c, d), respectively,

for the cuts described above. The electron is considered as misidenti�ed if it is separated by

more than two degrees in polar angle from the generated one. Given this, the e�ciency for

�nding the correct electron is evaluated to be greater than 99% for both samples.

After identifying the electron, the kinematic variables are derived. This mostly relies on the

electron measurement (cf. chapter 9.1), only the evaluation of W

2

makes use of the hadronic

measurement. W

2

is calculated with the double angle method [14]. The hadronic �nal state for

this calculation is de�ned to be the sum of calorimetric cell energies, above the noise thresholds

1

,

in the LAr, IRON and BEMC calorimeters, after eliminating the energy due to the scattered

electron.

With all these ingredients one achieves a data sample with high e�ciency and purity, as

can be seen from table 9.1. This is based on generated events, where N

gen

is the number of

N

gen

N

tot

rec

N

true

rec

e�ciency purity

BEMC 12961 12318 11598 0.90 0.94

LAr 3004 2895 2752 0.92 0.95

Table 9.1: Data selection e�ciency and purity based on the expectation of MEPS. Using ef-

�ciency errors the uncertainty of e�ciency and purity are below 1%. The generated events

correspond to a luminosity of L

int

= 0:32 pb

�1

and L

int

= 1:47 pb

�1

for the BEMC and LAr

sample respectively, both using MRSD

�

as PDF.

generated DIS events ful�lling all kinematic requirements applied to the generated quantities.

N

tot

rec

is the number of events selected by the cuts described and N

true

rec

are those events in N

tot

rec

1

The noise suppression is described in [43]. In addition to the online noise suppression for the IRON and

BEMC calorimeters, only cells above 0.2,0.5 GeV are considerd.
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Figure 9.5: Quality of the electron polar angle #

e

and Q

2

e

measurement.

(a,b) The BEMC sample.

(c,d) The LAr sample.

which are also element of N

gen

. The e�ciency is de�ned as N

true

rec

divided by N

gen

and the

purity is N

true

rec

divided by N

tot

rec

. The errors are calculated as e�ciency errors,

�(�) =

s

�(1� �)

N

(9.1)

for example, for the e�ciency calculation � equals N

true

rec

/ N

gen

and N is N

gen

. The deviation

of purity and e�ciency from unity are due to detector ine�ciencies and resolution e�ects at

the kinematic boundaries.

In order to measure �

s

(Q

2

) one has to divide the data sample into Q

2

e

bins. This needs

a good resolution in Q

2

e

which is de�ned here as the width of the f(Q

2

e

) = (Q

2

e

� Q

2

gen

)=Q

2

gen

distribution, where Q

2

gen

is the generated value (cf. �gure 9.6). The � value is obtained by a

�t to the f(Q

2

e

) distribution using a gaussian and a small constant term (cf. �gure 9.6 (b)) to

account for the tails. Figure 9.6 (a) shows the mean and � of the gaussian for DIS MEPS events,
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selected by applying all cuts to the generated quantities. They are divided into �ve bins in

Q

2

gen

, with the bin boundaries given in table 9.2. Given this binning the (2+1)-jet cross section

per bin (cf. table 7.1) is similar for the two samples, leading to comparable statistical accuracy.

This binning will be used throughout. The points are plotted at the center of the Q

2

gen

bins

BIN 1 BIN 2 BIN 3 BIN 4 BIN 5

boundaries [GeV

2

] 10-18 18-30 30-100 100-400 400-4000

mean [GeV

2

] 13.5 23.0 45.1 234 857

Table 9.2: The Q

2

binning of the event selection.

calculated on a linear scale. Figure 9.6 (b) shows as an example the f(Q

2

e

) distribution of the

second bin. The mean is distributed around zero, showing that there is no signi�cant shift, and

the resolution is below 5% for the whole Q

2

e

range.

Figure 9.6: The Q

2

e

resolution, for de�nitions see text.

(a) The mean value < f(Q

2

e

) > and � (error bars) of the �t to f(Q

2

e

) as a function of Q

2

gen

.

(b) The f(Q

2

e

) distribution for one of the bins of the BEMC sample together with the �t.
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After having shown that the reconstruction of kinematic quantities works well, justi�cation

for the use of LEPTO61 for the resolution and e�ciency study is given by showing the similarity

of the distributions between LEPTO61 and the H1 data. Figures 9.7 and 9.8 show the electron

spectra obtained from the H1 data compared to the prediction of the MEPS Monte Carlo. All

these distributions are based on the reconstructed electron and are normalized to area unity,

so enabling the shape of the distributions to be compared. The energy and angle are taken

from the electron, y

e

and Q

2

e

are derived from equation 3.10. The agreement between data and

Monte Carlo is nice for both samples. The measurement will be compared to a parton level

Monte Carlo PROJET, consequently also the distributions derived from the generated electron

are shown (cf. �gure 9.9 and 9.10) comparing to the H1 data. The Monte Carlo distributions

are based on the event selection using only the generated quantities. The bad y

e

resolution for

low y

e

values

2

means that the peak at low y

e

is smeared out. This is more pronounced in the

BEMC sample, where it corresponds to electron energies close to the initial electron energy.

However the lower cuto� in y is, in this analysis, given by W

2

which relies mainly on the

hadronic �nal state and not on the electron energy measurement. Therefore no lower cut on

y

e

is applied and this analysis is not a�ected by the bad resolution. This poor resolution is

described to some degree by Monte Carlo, as can be seen from the �gures 9.7 (c) and 9.8 (c).

This gives con�dence that the event selection, based on reconstructed objects, can be per-

formed with enough accuracy to compare to a parton model prediction.

2

The y

e

resolution is �y

e

= (1=y

e

) � (�E

e

=E

e

)
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Figure 9.7: LAr electron spectra compared to the MEPS model on the reconstructed level.

The circles represent the H1 data and the histogram the MEPS prediction.

(a,b) The measured electron energy and polar angle.

(c,d) y

e

and Q

2

e

.



60 CHAPTER 9. TRIGGER AND EVENT SELECTION

Figure 9.8: BEMC electron spectra compared to the MEPS model on the reconstructed level.

The circles represent the H1 data and the histogram the MEPS prediction.

(a,b) The measured electron energy and polar angle.

(c,d) y

e

and Q

2

e

.
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Figure 9.9: LAr electron spectra compared to the MEPS model on the generated level. The

circles represent the H1 data and the histogram the MEPS prediction.

(a,b) The electron energy and polar angle.

(c,d) y

e

and Q

2

e

.
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Figure 9.10: BEMC electron spectra compared to the MEPS model on the generated level. The

circles represent the H1 data and the histogram the MEPS prediction.

(a,b) The electron energy and polar angle.

(c,d) y

e

and Q

2

e

.



Chapter 10

Jet rate determination and

uncertainties

Here the jet de�nition chosen for this analysis, and also the tools to suppress the parton showers

are discussed. Details of the pseudo particle approach are given, followed by a discussion of

the y

c

resolution and the jet reconstruction quality in terms of p

?

t;jet

and #

jet

resolutions. The

results of the above studies are used to demonstrate that the observed jet rates can be corrected

to the parton level using LEPTO61. This is required to confront PROJET with the H1 data.

Finally uncertainties and alternatives to the choices made are investigated.

Three di�erent levels of the event evolution (cf. section 7) are considered. On all these

levels the jet properties are studied, to be speci�c:

� The parton level denotes all outgoing partons after the evolution of ISPS and/or FSPS

including the remnant. This is the QCD prediction, to the best knowledge of an event

generator.

� The hadron level is de�ned as all �nal state stable particles

1

excluding neutrinos, that

means a model of a full acceptance and in�nite resolution detector.

� The detector level denotes reconstructed objects. Di�erent to the �rst two levels, which

only exist for Monte Carlo generated events, this can be either H1 data or fully simulated

and reconstructed Monte Carlo events.

10.1 jet rate determination

To get meaningful results when comparing a theoretical calculation on the parton level to jets

seen in the H1 experiment, one has to de�ne the jets at the detector level as similar as possible

to the ones de�ned by the cross section calculation. The calculation is done in the framework

of the JADE algorithm (cf. section 5.1). This requires the same procedure to be used for the

data analysis, namely using the JADE algorithm including the remnant and taking W

2

as scale

in the clustering procedure. The only choices left are

� which objects to use for clustering on the detector level (cf. section 10.4.1), either charged

tracks, calorimetric clusters, cells or combinations of these objects

1

Particles with � > 8 � 10

�9

s are considered to be stable

63
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� the recombination scheme in which clustering is performed (cf. section 10.4.2)

� the Lorentz frame

� how to calculate W

2

from the data

The aim of this decisions is to get the best correlation between the partonic jets and the jets

on detector level, based on investigations with an event generator.

The jet de�nition made here is based on calorimetric clusters and a pseudo particle (cf.

sections 4.2.1 and 10.3.1), which is included in the clustering as well. Clustering is performed

in the JADE scheme in the laboratory system and W

2

is calculated as the invariant mass

squared of the sum of all objects entering the JADE algorithm. Due to measurement problems

the Plug calorimeter is excluded from the analysis, and the BEMC energy is rescaled by 1.6 to

weight from the electromagnetic to the hadronic scale.

The impacts of various other possible choices are discussed in section 10.4. In addition the

k

t

algorithm (cf. sections 4.2.2 and 10.5) is considered, as the corresponding calculations are

expected to be available in future [25].

10.2 The suppression of parton showers

The interest is to isolate the matrix element structure of DIS, or, in other words, the hard in-

teractions calculable in perturbation theory. To do this soft and collinear interactions, modeled

as PS in event generators, need to be eliminated.

The numerical importance of PS can be seen from �gure 10.1, which shows jet rates, com-

paring the ME with the MEPS approach for the BEMC sample and running the jet algorithm

on the parton level. Because this is the �rst of several jet rate plots it will be discussed in more

detail. Shown is the relative number of (N+1)-jets as a function of the jet algorithm parameter

y

c

. Starting from the left hand side the rates are shown for increasing values of y

c

. Increasing y

c

means decreasing the resolution power and thereby the number of observed jets. If y

c

� 1 one

ends up with a (0+1)-jet event, everything is clustered in one object. The rate which vanishes

at the lowest y

c

value is the one with the highest multiplicity. In this way of plotting the jet

rates the errors of the points at di�erent y

c

values are correlated. An event which is classi�ed

as a (2+1)-jet, e.g. at y

c

= 0:001, stays in the (2+1)-jet class until it ips to a (1+1)-jet at

y

c;2+1!1+1

� y

21

> 0:001, and contributes to all points between. Using only one point at a

particular y

c

value, which will be done in this analysis, this correlation does not matter. For

future high statistic studies of the y

c

dependence of the jet rates it will be preferable to study

the di�erential distributions (cf. section 6.2) instead. The errors are calculated as e�ciency er-

rors (cf. equation 9.1), where � equals R

N+1

. In all these jet rate plots the (1+1)-jet, (2+1)-jet,

(3+1)-jet rate and the rate for > (3+1)-jets are shown.

In LEPTO the ME calculation is to O(�

s

), meaning at most a (2+1)-jet con�guration is

generated while using the ME option. The PS generates more partons by radiation and in turn

higher jet multiplicities occur in the low y

c

region. At y

c

> 0:01 only (2+1)-jet and (1+1)-jet

events are left but the number of (2+1)-jet events at y

c

= 0:02 is considerably increased due to

parton showers. To determine whether this is due to IS or FS parton showers �gure 10.2 shows

the jet rates separately for IS and FS and compares them to ME. This is questionable because

in principle IS and FS should interfere, but it is used only as a hint to decide which part of

the PS is more important. As expected, the FSPS, which is well tested in e

+

e

�

annihilations,

does not modify the ME distribution signi�cantly, it is found to reduce the jet rate for high
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Figure 10.1: Jet rates for the BEMC sample using ME and MEPS on the parton level for all

jets. The used PDF is MRSD

�

. For explanations see text.

y

c

. The big e�ect is mostly due to IS, where there is some freedom (cf. section 7.1.3) in the

prescription because at HERA one has for the �rst time to face this problem. Comparing to

the corresponding jet rates for the LAr sample (cf. �gures 10.3 and 10.4) gives a handle to look

for a x or Q

2

dependence of the PS. No dramatic change can be seen, the main features are

the same. In the LAr sample and for higher Q

2

the (3+1)-jet events occur up to a somewhat

higher y

c

value and the additional (2+1)-jet rate at y

c

= 0:02 due to IS is less pronounced,

however, it is signi�cantly above the ME prediction. Due to this it is necessary to reduce the

events caused by PS in the whole kinematic range.

In the �nal state soft partons close to the hard outgoing partons occur. To avoid seeing

them as separate jets a minimum jet cut (y

c

> 0:02) is chosen, which assures together with the

W

2

cut that the invariant mass squared of any 2-jet system is bigger than 100 GeV

2

. At this

y

c

value all higher jet rates have vanished.

In the initial state these interactions are expected to generate partons parallel and/or with

low p

t

to the incoming proton. The resulting jets can be reduced by making angular cuts in

the laboratory system, and a transverse momentum cut in the photon proton center of mass

system. Another reason for making angular cuts in the laboratory system is to contain the

entire jet in the sensitive detector volume to get a correct estimate of the jet four vector which

is needed to impose further jet cuts (see below).

Figure 10.5 (a) and �gure 10.6 (a) show the inclusive #

jet

and the p

?

t;jet

distribution for the

(2+1)-jet events on the parton level for ME and MEPS in the BEMC sample, at y

c

= 0:02,

without applying any additional cut. One observes jets with rather high p

?

t;jet

which have small

polar angles. The corresponding �gures 10.7 (a) and 10.8 (a) for the LAr sample look similar.

Inspecting these distributions lead to the following cuts.

� 10

�

� #

jet

� 160

�

in the laboratory system for each jet.
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Figure 10.2: Comparison of the jet rates for ME to the ones with ISPS and FSPS for all jets

using the BEMC sample. The used PDF is MRSD

�

. For explanations see text.

� p

?

t;jet

> 5:0 GeV in the photon proton center of mass system for the hard jets events with

(2+1)-jets .

The success of these cuts is demonstrated in the �gure 10.6 (b-d) which shows the same com-

parison when applying the cuts, separately (b, c) and together (d). It is seen that the PS is

reduced to a large extend, with the #

jet

cut being the more e�ective one. For low momentum

transfer Q

2

� 10 GeV

2

, and thereby Q � 3 GeV , the p

?

t;jet

> 5:0 GeV cut introduces at least

one hard scale which is needed to apply perturbation theory. This is a reasonable choice, in

the limit of photoproduction the p

?

t;jet

2

scale even replaces the Q

2

scale.

One can not expect to suppress all the PS because in the LEPTO61 framework PS are used

also for hard emissions in a region where the application is questionable (cf. section 7.1.2) and

the emissions can be described already in the matrix element approach of PROJET. Because

PROJET is a NLO Monte Carlo it contains the O(�

2

s

) terms which in the LEPTO approach

are partly taken into account in the �rst term of the leading log approximation of PS. From

this it follows that there is no need to get rid of all the PS. Therefore, this investigation does

not give a quantitative result of how far the higher order e�ects are reduced, because the PS

description of LEPTO61 needs not to be totally correct (see below) and the borderline between

ME and PS is not sharp. But choosing these cuts gives certainly more weight to the matrix

element contribution.

In section 11.2 it will be demonstrated that using these cuts the jet rates in the framework

of LEPTO give a fair description of the H1 data.

As discussed in section 7.1.2 the scale of maximum virtuality in the initial state parton

shower, which governs the amount of radiation, is somewhat arbitrary. Figure 10.9 demonstrates

the numerical e�ect by showing the jet rates on the parton level while varying the scale within

reasonable limits. Using the lower scale gives results close to the pure ME approach whereas
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Figure 10.3: Jet rates for the LAr sample using ME and MEPS on the parton level for all jets.

The used PDF is MRSD

�

. For explanations see text.

choosing the upper scale (cf. section 7.1.3) gives a large number of additional jets. The jet

rate changes from 5:5% to 9%, at y

c

= 0:02, by using the extreme choices. This gives another

hint that the reduction of PS derived within the LEPTO61 PS description by applying the jet

restrictions discussed above have not to be taken literally. The way one has to proceed is to

restrict the freedom in this scale by comparing MEPS to HERA data, for example, by using

the observed energy ow spectra. The actual default value used in LEPTO61 is the maximum

scale.
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Figure 10.4: Comparison of the jet rates for ME to the ones with ISPS and FSPS for all jets

using the LAr sample. The used PDF is MRSD

�

. For explanations see text.
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Figure 10.5: Reduction of PS for the BEMC sample. Shown are the #

jet

spectra on parton level

for MEPS (open histogram) and ME (hatched histogram) for various cut scenarios.

(a) Without any cut. (b) Applying only the #

jet

cut.

(c) Applying only the p

?

t;jet

cut. (d) Applying both cuts.
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Figure 10.6: Reduction of PS for the BEMC sample. Shown are the p

?

t;jet

spectra. The de�nitions

and ordering of a-d are as in �gure 10.5.
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Figure 10.7: Reduction of PS for the LAr sample. Shown are the #

jet

spectra. The de�nitions

and ordering of a-d are as in �gure 10.5.
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Figure 10.8: Reduction of PS for the LAr sample. Shown are the p

?

t;jet

spectra. The de�nitions

and ordering of a-d are as in �gure 10.5.
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Figure 10.9: The inuence of the maximum virtuality scale in ISPS.

Compared are the use of the minimum scale (a, left) and the maximum scale (b, right) to the

pure ME case for the BEMC sample, using MRSD

�

as PDF without additional jet requirements.
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10.3 jet reconstruction quality

10.3.1 The pseudo particle approach

As already discussed, the pseudo particle, which accounts for the unseen proton remnant, is

included in the jet algorithm. The best estimate of the remnant four vector is given by the

missing longitudinal momentum in the event. The missing momentum is calculated as

P

miss

z

= p

z p

+ p

z

� P

vis

z

(10.1)

where P

vis

z

is the summed visible longitudinal momentum and p

z p

and p

z

are the longitudinal

momenta of the incoming proton and electron. Then, in addition to the measured objects, the

pseudo-particle with the four momentum (P

miss

z

; 0; 0; P

miss

z

) is fed into the jet algorithm.

This is essential because on the matrix element level in PROJET it is checked whether any

outgoing parton can be resolved from the remnant at y

c

and the renormalization of the parton

densities for IS partons parallel to the proton also uses this separation.

From four vector arithmetics it is seen that for calculating the pseudo particle vector no

electron identi�cation is needed, only the conservation of the longitudinal momentum is used.

Giving also the missing transverse momentum to the pseudo particle makes it sensitive to the

missing momentumof neutrinos induced by decays of for instance pions and kaons which should

be avoided. A remnant carrying a signi�cant transverse momentum is also in contradiction to

the spectator model role of the proton remnant. According to this model, besides the intrinsic

transverse momentum of the constituents, the proton remnant should not have any signi�cant

transverse momentum.

Including the pseudo particle has several advantages in the jet reconstruction.

� The particles produced between the remnant and the hard partons use energy of both

and consequently partly 'belong' to the remnant. If they are closer in m

2

ij

to the remnant

they will be clustered to it.

� The separation of the hard partons with respect to the remnant will be treated correctly

that means equal to the theoretical prescription. Here one does not aim for the highest

possible resolution power in the hard subsystems, but for a description as close as possible

to the theoretical jet de�nition.

� Including the remnant gives the correct W

2

value, up to reconstruction errors, and it im-

proves dramatically the correlation between the jets on parton level and on reconstructed

level.

The success of this approach can be seen from �gure 10.10 which shows the jet rates on the

parton level and the detector level with and without using the pseudo particle, for the BEMC

sample and without additional jet requirements. Using the pseudo particle approach, the

correspondence of the jet rates on detector level and parton level is good for y

c

> 0:02, which

is not the case for the attempts without using the pseudo particle. For the jet reconstruction

without using the pseudo particle, two approaches concerning the scale in m

2

ij

are investigated.

In (a) the scale is taken as the invariant mass of the measured objects. This scale is much

lower than W

2

, which rules the jet rates on parton level, because the partons level is de�ned as

all partons including the remnant. In �gure 10.10 (b) W

2

is calculated from the double angle

method. This scale is too large compared to the mass of the measured part of the hadronic

�nal state leading to a shift in the jet rates and a large (0+1)-jet rate even for y

c

� 1.
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Figure 10.10: The impact of the pseudo particle approach using the BEMC sample. Shown are

the jet rates on detector level (full lines) and on parton level (dashed lines) using the standard

procedure (cf. section 10.1). As usual the (1+1)-jet, (2+1)-jet, (3+1)-jet rate and the fraction

of events with more than (3+1)-jets are displayed. Two di�erent approaches without using the

pseudo particle shown as dotted lines with the symbols on top are compared to that. The errors

are smaller than the symbol size. Due to the bad performance of the jet algorithm without the

pseudo particle there is a signi�cant (0+1)-jet rate which accounts for the remaining fraction

of events up to unity, however is not shown. It is easy to relate the various lines to the

corresponding jet rates if one looks at the high y

c

end, here the highest line has the lowest jet

multiplicity.

(a) m

2

ij

is scaled by the invariant mass of the seen objects m

2

ij

= y

c

�W

2

vis

.

The (1+1)-jet rate increases up to 55 % at y

c

= 0:04 where the (2+1)-jet rate is about

33 %, the (3+1)-jet rate 11 % and the contribution from higher jet rates is small.

(b) m

2

ij

is scaled by W

2

calculated from the double angle method m

2

ij

= y

c

�W

2

.

The (1+1)-jet rate decreases rapidly to 20 % at y

c

= 0:04. All higher jet rates are

negligible.



76 CHAPTER 10. JET RATE DETERMINATION AND UNCERTAINTIES

Due to W

2

being so large compared to the seen part everything is clustered in one object.

As usual this rate is not shown, it accounts for the rest up to unity. This plot demonstrates

that the jet rates on detector level, without using the pseudo particle, do not at all coincide

with the jet rates of the underlying parton level, showing that the pseudo particle is necessary.

10.3.2 Jet migrations and y

c

resolution

By using the pseudo particle not only does the inclusive rate coincide to a much better degree,

because the o�-diagonal elements of the correlation matrix are similar, but also the event by

event correlation of observed jets on both levels increases dramatically.

For the BEMC sample without special jet requirements, the correlation matrix at y

c

= 0:02

is

0

B

@

(1 + 1)� jet

(2 + 1)� jet

(3 + 1)� jet

1

C

A

det

=

1

100

0

B

@

88:0 2:8 0:0

4:6 3:6 0:1

0:0 0:0 0:1

1

C

A

0

B

@

(1 + 1)� jet

(2 + 1)� jet

(3 + 1)� jet

1

C

A

pa

0.7 % are (0+1)-jet events on both levels. For the LAr sample one gets

0

B

@

(1 + 1) � jet

(2 + 1) � jet

(3 + 1) � jet

1

C

A

det

=

1

100

0

B

@

76:0 6:6 0:2

5:7 10:4 0:3

0:1 0:3 0:2

1

C

A

0

B

@

(1 + 1)� jet

(2 + 1)� jet

(3 + 1)� jet

1

C

A

pa

In this approach the percentage of (2+1)-jet events on parton level, which remain (2+1)-jet on

detector level, is 56% for the BEMC sample and 60% for the LAr sample, at y

c

= 0:02. This is

somewhat smaller than the values quoted by the LEP [48] experiments, but in the same order

of magnitude. Events which are classi�ed as (2+1)-jet at one level and as (1+1)-jet at the other

and vice versa are expected because of resolution e�ects.

A (2+1)-parton state, for instance a BGF event, will show up as a (2+1)-jet event on the

parton level if y

c

is chosen su�ciently small. By increasing y

c

it reaches y

21

where it ips

to a (1+1)-jet event. This means either one parton is clustered to the remnant or the hard

subsystem is not resolved anymore. Looking at the same event on the detector level it will not

ip at exactly the same y

c

value due to several smearing e�ects, e.g. hadronization, detector

acceptance, energy resolution, angular resolution and 'wrongly' assigned objects to the jets.

One may regard y

21

as a quantity which is measured with a certain resolution and shift, the

jet migrations can be looked at as a simple consequence of this. Not having the same jet

classi�cation on both levels is the manifestation of the fact that there exist no (2+1)-jet or

(1+1)-jet event as such, a jet con�guration is simply a question of resolution in y

c

. What one

must aim for is a measurement of y

21

with good resolution and no shift. In this quantity all

detector e�ects are included. Following the described procedure �gure 10.11 and 10.12 show

the y

21

resolution for all events ful�lling the event selection (cf. section 9.1). Shown is the

correlation of y

21

on the parton and detector level (a), the di�erence between both (b) and the

di�erence for those events which have a y

21

on the parton level in the range 0.015-0.025 (c).

The y

21

values are shown in a stepsize of 0.002. The events on the horizontal axis are those

which iped at y

21

< 10

�3

on the detector level or are those which have never been a (2+1)-jet

event, and vice versa for the vertical axis.

The distributions are not gaussian, however this is clear because the di�erence is bounded

on the lower side and is folded by the steeply falling y

c

distribution of the events. The resolution

estimate, obtained by a gaussian �t in the region indicated by the curves, is in the order of



10.3. JET RECONSTRUCTION QUALITY 77

0.005 and the shifts are below 0.005. They are always negative as is expected if one measures

with a certain resolution a quantity which has a steeply falling distribution. The resolution in

(b) is dominated by the very soft non perturbative part at low y

c

.

Figure 10.11: y

21

correlation for the BEMC sample. For explanations see text.

(a) The correlation of the ip values on the parton level (pa) and the

reconstructed detector level (re). The stepsize is 0.002.

(b) The di�erence of both for all (2+1)-jet events.

(c) The di�erence restricted to the region 0:015 < y

21;pa

< 0:025.

10.3.3 Jet rate and jet four vectors

With all these ingredients the jet rates on the various levels can be inspected. Figure 10.13

shows the jet rates for LEPTO61 in the MEPS mode and using the PDFMRSD

�

on the parton,

hadron and detector level, for both the BEMC and the LAr sample, without jet cuts. At low

y

c

the curves are quite di�erent, this is due to the fact that one looks into the jets and splits

them into parts. The more objects exists, the more likely this is, so usually one gets more jets

the further the event has evolved from the parton level via the hadron level to the detector

level. If y

c

! 0 the algorithm would resolve every single object. The lower the y

c

the more the

jet rates are a�ected by the fragmentation where those e�ects get important. At y

c

= 0:02 the
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Figure 10.12: y

21

correlation for the LAr sample. For explanations see text.

(a) The correlation of the ip values on the parton level (pa) and the

reconstructed detector level (re). The stepsize is 0.002.

(b) The di�erence of both for all (2+1)-jet events.

(c) The di�erence restricted to the region 0:015 < y

21;pa

< 0:025.

di�erence in rate between the various levels is nearly gone. In addition this improves with Q

2

as can be seen from the LAr sample, the jets get more energetic and thus more collimated.

The interest is not only to get the correct rates but also to estimate the correct jet four

vector. To control the jet cuts one needs to know the resolution in the cut variables as well.

The �gures 10.14 and 10.15 show the resolution in #

jet

for both samples for y

c

= 0:02, for those

events which are (2+1)-jets on the parton and also on the detector level. The ambiguity of

which detector jet one assigns to which parton jet is solved by taking that combination which

gives the smaller sum of invariant masses. This is the natural choice for an algorithm which

clusters in terms of invariant masses. In (a) the correlation of #

jet

is shown. The correlation is

good but there are tails. The absolute resolution, shown in (b), is 5:4

�

and 3:4

�

for the BEMC

sample and the LAr sample respectively. The shifts are �1:9

�

and �0:8

�

. These values are

obtained by �tting a gaussian and a constant to the distributions of (b). The inclusive spectra

are shown in (c), the agreement is almost perfect for #

jet

> 10

�

. The p

?

t;jet

resolution is seen

in the �gures 10.16 and 10.17 which show similar distributions as discussed before for the #

jet

resolution. In (a) the good correlation is demonstrated which leads to inclusive distributions
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Figure 10.13: Jet rates at various levels. The parton level (dashed lines), the hadron level

(dotted lines) and detector level (full lines with points on top), are shown for both samples. For

explanations see text.

(a) The BEMC sample.

(b) The LAr sample.

(b), which agree well. The relative and absolute resolutions are shown in (c) and (d).

In summary it is seen that jet reconstruction improves with Q

2

. This concerns the rate

measurement and the resolutions in #

jet

and p

?

t;jet

. For Q

2

> 100 GeV

2

the jets are measured

with 18% p

?

t;jet

resolution, 3:4

�

#

jet

resolution and a small shift of �0:8

�

.



80 CHAPTER 10. JET RATE DETERMINATION AND UNCERTAINTIES

Figure 10.14: #

jet

resolution for the BEMC sample using all events which are (2+1)-jets on

both levels.

(a) The #

jet

correlation between the parton level (pa) and detector level (det) jets.

(b) The di�erence �# = #

det

� #

pa

, together with the �t (curve).

(c) The inclusive #

jet

spectra.
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Figure 10.15: #

jet

resolution for the LAr sample using all events which are (2+1)-jets on both

levels. Ordering and de�nition of the �gures are as in �gure 10.14.
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Figure 10.16: p

?

t;jet

resolution for the BEMC sample using all events which are (2+1)-jets on

both levels.

(a) The p

?

t;jet

correlation between the parton level (pa) and detector level (det) jets.

(b) The inclusive p

?

t;jet

spectra.

(c) The di�erence of both �p

?

t;jet

= p

?

t;det

� p

?

t;pa

, scaled by the value on parton level,

together with the �t (curve).

(d) The absolute di�erence of both in GeV , together with the �t (curve).
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Figure 10.17: p

?

t;jet

resolution for the LAr sample using all events which are (2+1)-jets on both

levels. Ordering and de�nition of the �gures are as in �gure 10.16.
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10.3.4 The correction to the parton level

The observed jet rate on detector level has to be converted to a jet rate on parton level in order

to be able to compare to PROJET. To include the e�ects of the event selection and the jet

reconstruction in one step the following procedure is applied.

The jet rate on parton level is de�ned by selecting the events as described in section 9.1

using only generated quantities and then performing the jet algorithm on parton level, with

all phase space restrictions discussed in the last sections. This rate is then compared to the

one obtained by using only reconstructed objects for the event selection and running the jet

algorithm on detector level as described in section 10.1. The correction factor f is de�ned as

R

2+1;pa

(Q

2

; y

c

) = f �R

2+1

(Q

2

; y

c

) (10.2)

The measured jet rate in the experiment has to be multiplied with f to get the expected jet

rate on parton level

2

.

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

y

c

= 0:02 0:90 � 0:06 1:10 � 0:11 1:22 � 0:12 1:16 � 0:09 0:99 � 0:09

p

?

t;jet

> 5 GeV

2

1:27 � 0:13 1:42 � 0:19 1:68 � 0:23 1:27 � 0:11 1:04 � 0:10

� > 0:01 1:71 � 0:14 1:16 � 0:09 1:03 � 0:09

p

?

t;jet

and � 2:36 � 0:29 1:26 � 0:11 1:05 � 0:10

y

c

= 0:03 1:36 � 0:18 1:59 � 0:29 1:77 � 0:32 1:19 � 0:13 1:05 � 0:12

p

?

t;jet

> 5 GeV

2

1:57 � 0:23 1:82 � 0:37 2:26 � 0:48 1:31 � 0:15 1:12 � 0:14

Table 10.1: Correction factors from the detector level to the parton level for two y

c

values

0.02 and 0.03, and for various cut scenarios. The numbers are the correction factors f from

equation 10.2. Making only the #

jet

cut leads to the values in line 1 and 4, if one applies in

addition the p

?

t;jet

cut one gets the values quoted in line 2 and 5. Line three shows the correction

factors for applying the #

jet

cut and in addition a cut on � for the (1+1)-jet events.

Table 10.1 shows the correction factors for various cut scenarios. The correction factors f

are obtained in each bin in Q

2

and separately for each jet requirement, using MEPS with the

MRSD

�

parton density. The R

2+1

(Q

2

; y

c

) values are based on fully simulated and reconstructed

Monte Carlo events, with the statistics as quoted in table 9.1. The R

2+1;pa

(Q

2

; y

c

) values can

be obtained from the generator alone, and are based on a statistics of 25000 events per bin

after the event selection. The errors quoted of the correction factors (cf. table 10.1) are the

statistical errors of the fully simulated and reconstructed events. Due to the lack of Monte

Carlo statistics at present the errors are large.

The general behaviour is the following. The more additional features of the jets one requires

the higher the correction factors get. The shifts in the cut quantities p

?

t;jet

and #

jet

lead to a

2

Note that here Q

2

is di�erently measured on the both sides of the equation. For R

2+1;pa

(Q

2

; y

c

) it is the

generated one, whereas for R

2+1

(Q

2

; y

c

) it is reconstructed from the electron.
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loss of events on the detector level compared to the parton level. For instance, if one cuts at

p

?

t;jet

> 5 GeV , due to the shift in the reconstructed p

?

t;jet

(cf. section 10.3.3), one e�ectively

cuts at a higher value, thereby loosing events. One can either correct for this by shifting the

cut value according to the Monte Carlo studies, which would decrease the remaining correction

factors, or by applying the correction factors directly. The second choice is taken here. The

correction factors for the low Q

2

bins are much higher than the corrections for Q

2

> 100 GeV

2

where the jet reconstruction works better, leading to correction factors in the order of unity.

This correction takes into account everything which happenes from a generated parton jet to a

seen detector jet, which may distort the measurement of the jet four vector. It does not correct

for higher order e�ects, but only for hadronization and detector e�ects. Although MEPS is the

favourite generator (cf. section 7) it would be helpful to evaluate the model dependence of the

correction factors by using another QCD inspired model e.g. the CDM model. At the moment,

due to the limited statistics available, this is not possible.

10.4 Jet rate determination uncertainties

10.4.1 Calorimetric cells versus calorimetric clusters

The choice of objects to cluster is quite obvious. The H1 tracking devices do not have full

acceptance at the moment, due to technical problems. Therefore, tracks alone or combinations

of tracks with calorimetric objects can not be used at the moment. The question is whether

to choose calorimetric cell energy information or calorimetric energy clusters formed by the

calorimetric pattern recognition which adds up several cells. The cells have the advantage of

giving a higher granularity but also assignments of low energy objects to the wrong jet are more

likely. A reason for using calorimetric clusters is the minimization of the used computer time

per event. The number of possible pairs (i, j) increase rapidly with the number of considered

objects and so does the used CPU time. Figure 10.18 shows the jet rates by using either

calorimetric clusters or cells. The di�erences are found to be marginal for all y

c

. At y

c

= 0:02

the deviation is smaller than the statistical precision which again is smaller than the size of the

symbols. The choices are equally good and so the faster one is chosen.

10.4.2 Recombination scheme uncertainty

An interesting aspect is the sensitivity of jet rates to the recombination scheme in which the

clustering is performed (cf. table 4.1). The schemes di�er in the de�nition of m

2

ij

and the

choice of how to combine two objects (i, j) into k (cf. table 4.1). The test quantity m

2

ij

can be

either the invariant mass of two objects (i, j) or the approximate invariant mass neglecting the

individual masses m

2

i

; m

2

j

.

On the matrix element level this is not important because the partons are massless and the

calculations in PROJET are NLO and not NNLO, in consequence one combines at most four

to three partons in the (2+1)-jet case and three to two partons in the (1+1)-jet case but never

tries to combine an object which has got a mass by preceding combinations.

After parton showering the situation changes and a recombined object with mass m

2

k

> 0

may be combined with another object. Obviously this gives a freedom which one can use either

in the m

2

ij

measure, as done in the JADE scheme or in the recombination procedure, where

one either conserves energy (E0 scheme) or momentum (P and P0 scheme) in order to get the

combined vector massless. The di�erence between P und P0 is that the later corrects for the
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Figure 10.18: jet reconstruction from calorimetric clusters versus cells. The jets obtained from

cells are shown as symbols with error bars, which as usual are smaller than the symbol size,

the one from calorimetric clusters as full line. Both samples, the BEMC (a, left) and the LAr

sample (b, right), are considered.

not conserved energy by updating the scale after each violation of energy conservation. These

schemes are not Lorentz invariant. If one wants to keep the Lorentz invariance one uses the E

scheme which conserves both energy and momentum to the cost of having massive objects.

Because the procedure is not �xed by the NLO calculation the scheme which gives the best

correlation between parton level jets and detector level jets can be chosen. The �gures 10.19

and 10.20 show the jet rates on parton and detector level for the various schemes discussed

above, using MEPS with PDF MRSD

�

, for all events ful�lling the event requirements de�ned

in section 9.1. The di�erences between the P, E0 and JADE scheme are marginal, whereas the

Lorentz invariant E scheme gives totally di�erent jet rates on the parton and the detector level.

Similar results were obtained by the LEP experiments [48]. The choice made here is to use the

original JADE scheme.
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Figure 10.19: Recombination scheme dependence for the BEMC sample. The �gures a-d show

the jet rates for various recombination schemes explained in table 4.1. The points are connected

with lines to guide the eye. The full lines are the detector level the dashed ones the parton level.

(a) The JADE recombination scheme.

(b) The E recombination scheme.

(c) The E0 recombination scheme.

(d) The P recombination scheme.
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Figure 10.20: Recombination scheme dependence for the LAr sample. Ordering and de�nition

of the �gures are as in �gure 10.19.
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10.5 Confronting the k

t

algorithm with DIS events

As already discussed in section 5.2 calculations in resummed techniques are expected to be

performed for ep scattering. In this section, this is investigated from an experimental point of

view to see if it is feasible to de�ne jets in terms of the k

t

algorithm. The procedure of the jet

algorithm, which is applied here is taken from [24] and was discussed in section 4.2.2. The jet

algorithm is studied for the two samples and using it in two reference frames, the laboratory

frame and the Breit frame. According to [24] the E

t

scale is de�ned in the order of Q

2

, namely

chosen is Q

2

=2 in both frames.

The �gures 10.21 and 10.22 show the result. In order to blow up the low y

c

and high y

c

region the same plot is shown twice, on a logarithmic scale (cf. �gure 10.21) and on a linear

scale (cf. �gure 10.22). The general behaviour is that the Lorentz frame does not make too

much di�erence. The performance is similar in both frames. The dependence on Q

2

however

is strong. In the Lar sample the inclusive jet rates on detector and parton level agree quite

well, the result in the Breit frame being a bit better in that respect. However, at low Q

2

the

jet rates do not coincide on both levels, it is even hard to recognize the various contributions.

The jet rate which has the highest fraction at y

c

! 1 is the one with the lowest multiplicity.

It is clear that for Q

2

� 20 GeV

2

and y

c

= 0:05 one uses k

t

values of 0.25 GeV , which

means the fragmentation region is probed. At y

c

= 1 the relative transverse momentum of the

hard subsystem, for instance in a BGF event, reaches 5 GeV . In general compared to invariant

masses of > 100 GeV

2

, that are obtained when using the JADE algorithm at W

2

> 5000 GeV

2

and y

c

= 0:02, these values are rather small. In this way of using the k

t

algorithm it is not

useful for Q

2

< 100 GeV

2

, however in the LAr sample the performance looks good from an

experimental point of view.

Using the k

t

algorithm on the LAr sample gives encouraging results when comparing parton

and detector level jets and the algorithm also gives a good description of the data. However,

although it seems to be a feasible jet algorithm for Q

2

> 100 GeV

2

, from an experimental

point of view, it can not test QCD unless theoretical calculations in NLO are available in

the k

t

algorithm. Therefore, here no attempt is made to tune the parameters to get a better

performance of the k

t

algorithm in the BEMC sample. However, other studies exist, for example

a procedure to use the k

t

algorithm by using a �xed scale is studied in [49].
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Figure 10.21: k

t

algorithm compared to H1 data on a logarithmic scale. The full lines represent

the MEPS prediction on detector level, the dashed ones the parton level expectation. The points

are the H1 data with the following notation. The one jet events are shown as rotated squares,

the two jets as circles, the three jets as triangles, the four jets as upside down triangles and the

rate of more than four jets as squares. The remnant is not counted in this scheme. The zero

jet rate is small, the remaining fraction up to unity, and not shown.

The two top �gures contain the LAr sample results, the lower ones those of the BEMC sample.

The scale is always de�ned as E

t

= Q=2

(a) Lar sample with jet algorithm performed in the laboratory frame.

(b) Lar sample with jet algorithm performed in the Breit frame.

(c) BEMC sample with jet algorithm performed in the laboratory frame.

(d) BEMC sample with jet algorithm performed in the Breit frame.
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Figure 10.22: k

t

algorithm compared to H1 data on a linear scale. The content is identical to

the one in �gure 10.21, only the region of large y

c

is shown in more detail on the linear scale.



Chapter 11

Results

After all necessary tools are prepared and cross checks are made, this section deals with the

results, which will come in three parts. First comparisons of the H1 data with the existing

event generators will be discussed, concentrating on jet distributions and the (2+1)-jet rate

evolution as a function of Q

2

.

Then the feasibility of the measurements of the di�erential jet distribution and the jet cross

section will be demonstrated.

The biggest part concerns the comparison of the H1 data to a QCD prediction, based only

on fundamental parameters in QCD, in the framework of PROJET, namely the measurement

of �

s

from jet rates. A preliminary result is obtained. Then the pros and cons and the present

limitations will be addressed, closing with an outlook to what may be attained in the near and

distant future.

11.1 Jet rate distributions compared to the Event Gen-

erators

The R

N+1

distributions and the R

2+1

(Q

2

; y

c

) ratio are considered here and compared to the

predictions made by various event generators discussed in section 7. For details of the use of

these event generators see [46].

Figure 11.1 shows the R

N+1

distributions as a function of y

c

for the BEMC (a) and LAr

(b) sample without applying any jet cuts in terms of #

jet

and p

?

t;jet

. The H1 data is compared

with the predictions of MEPS, HERWIG, CDM and DJANGO using (W �Q) as the maximum

virtuality scale in a pure parton shower approach. The chosen PDF is MRSD

�

for all models.

For the Monte Carlo predictions the corresponding luminosity is always less than the H1 data

luminosity. For the various models only a limited statistics is available using MRSD

�

as PDF.

For the MEPS model using MRSD

�

as PDF higher statistics is available (cf. table 9.1).

In the BEMC sample the descriptions by HERWIG and MEPS are fair, whereas CDM and

DJANGO generate too many (2+1)-jet events. Although the Monte Carlo statistics in the LAr

sample is low it can be seen that MEPS and CDM describe the data best. DJANGO again

predicts to many (2+1)-jet events and HERWIG produces less than the data. From this it is

clear that only MEPS is able to describe the evolution of (2+1)-jet events with Q

2

. This is

seen in �gure 11.2, where R

2+1

(Q

2

; y

c

) is plotted for y

c

= 0:02, this time applying the #

jet

cut.

After suppressing the parton shower the results using HERWIG fall too low, over the whole Q

2

range and the DJANGO prediction is much too high. CDM gives a too at Q

2

behaviour, it

92
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Figure 11.1: R

N+1

distribution compared to various event generators. The points represent the

H1 data, the lines are the Monte Carlo predictions on the detector level for the BEMC (a) and

the LAr (b) sample. Considered here are MEPS (full lines), Herwig (dotted lines), the colour

dipol model CDM (dashed lines) and DJANGO (dash dotted lines) all using MRSD

�

as the

PDF.

overshoots the data in the BEMC region and undershoots it in the last two bins. Only MEPS

describes all features of the jet rates quite reasonably. This con�rms earlier results, obtained

using 1992 H1 data, which can be found in [46].
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Figure 11.2: Uncorrected R

2+1

(Q

2

; y

c

) ratio compared to event generators. The de�nitions are

as in �gure 11.1, but the #

jet

cut is applied to suppress the parton showers. For explanations

see text.
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11.2 H1 jet data compared to the MEPS predictions

Because LEPTO61 is used to correct from the detector to the parton level, the agreement of

LEPTO61 with the observed H1 data before and after the jet cuts described in section 10.2 is

explored in more detail. Considered are the jet rates and the jet kinematic in terms of #

jet

and

p

?

t;jet

spectra.

Figure 11.3: R

N+1

distribution compared to MEPS without PS suppression. Shown are the

observed jet rates as data points and the MEPS predictions as lines. The full line represents

the jets on the detector level and the dashed line the ones on the parton level. The used PDF

is MRSD

�

.

Figure 11.3 show the jet rates in the BEMC and LAr sample once more, this time using

MRSD

�

as the PDF and with much higher statistics in the LAr sample (cf. table 9.1) than in

section 11.1. The jet cuts are not applied. The H1 data is shown as points, the errors are smaller

than the symbol size, the full line is the MEPS prediction on detector level and the dashed line

is the prediction for the parton level jets. For the BEMC sample the description of the jet rate

above y

c

= 0:02 is good whereas below that MEPS predicts fewer jets than are observed in the

data. For the LAr sample the result is di�erent. The description below y

c

= 0:01 is almost

perfect for all multiplicities. The high jet multiplicities>(3+1)-jets are described perfectly, but

there is a signi�cant di�erence in the (2+1)-jet rate and correspondingly in the (1+1)-jet rate

for y

c

> 0:02. After imposing the #

jet

cut for all events which are (2+1)-jet events at y

c

= 0:02
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Figure 11.4: R

N+1

distribution compared to MEPS with PS suppressed. The #

jet

cut is applied

only for those events which are (2+1)-jet events at y

c

= 0:02. Shown are the observed jet

rates as data points and the MEPS predictions on detector level as full line. The used PDF is

MRSD

�

.

(cf. �gure 11.4) the description of the seen jet rates by MEPS is perfect for the LAr sample for

all y

c

, for the BEMC sample the discrepancy at low y

c

remains. For y

c

> 0:015 the rates are

described well in both samples.

Concerning the #

jet

and p

?

t;jet

distributions, the prediction by MEPS is reasonably good,

both before and after reduction of PS. The exception is the low #

jet

region, where the data

show more jets than predicted by MEPS. This can be seen from the �gures 11.5 and 11.6, which

contain the inclusive #

jet

and p

?

t;jet

spectra for all (2+1)-jet events at y

c

= 0:02 on the detector

level. The distributions are all normalized to unit area. The distributions (a, c) are without,

while (b, d) are with reduction of PS. After applying the cuts one observes a small shift in p

?

t;jet

in both samples.
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Figure 11.5: The inclusive #

jet

and p

?

t;jet

distributions for the BEMC sample compared to MEPS.

The data are represented by the points, the Monte Carlo by the histogram.

(a) The #

jet

distribution before the cuts.

(b) The #

jet

distribution with both cuts applied.

(c) The p

?

t;jet

distribution before the cuts.

(d) The p

?

t;jet

distribution with both cuts applied.



98 CHAPTER 11. RESULTS

Figure 11.6: The inclusive #

jet

and p

?

t;jet

distributions for the LAr sample compared to MEPS.

The de�nitions and ordering of �gures a-d are as in �gure 11.5.
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11.3 Measurement of the D

2

(y

c

) distribution

As discussed in section 6.2 the D

2

(y

c

) distribution is the preferred one to use if one wants to �t

the y

c

behaviour of the (2+1)-jet rate. Although this will not be used in this work, the general

feasibility will be demonstrated. Figure 11.7 contains the D

2

(y

c

) distribution as measured by

the H1 experiment together with the D

3

(y

c

) and D

4

(y

c

) distribution, de�ned in equation 6.7

and 6.8 respectively and compared to the MEPS prediction on the parton level and the detector

level, for both samples. All di�erential jet rates are well described in the LAr sample whereas

Figure 11.7: The measured di�erential jet rates compared to MEPS. The points represent the

H1 data, the lines are the MEPS prediction for the detector level (det) and the parton level

(pa). No further jet cuts are applied. The used PDF is MRSD

�

.

(a) The BEMC sample.

(b) The LAr sample.

in the BEMC sample the description fails for D

3

(y

c

) and D

4

(y

c

) in the low y

c

region and for

D

2

(y

c

) at high y

c

. Certainly more work is needed to correct the D

2

(y

c

) distribution to the

parton level. The y

c

behaviour in the whole range has to be studied. The low y

c

region is

dominated by non perturbative e�ects which have to be investigated in future.
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11.4 Measurement of the (2+1)-jet cross section

As outlined in section 6.3 the (2+1)-jet cross section is a good quantity to measure �

s

also at

low Q

2

, because it does not su�er from the PDF uncertainty at low � values. Here only the

method will be outlined, therefore the simple and wrong assumption is used that all e�ciencies

are 100%.

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

y

c

= 0:02 N

tot

5151 3322 2966 568 273

N

2+1

124 80 94 46 33

R [%] 2.4 2.4 3.2 8.1 12.1

y

c

= 0:03 N

tot

5002 3243 2901 564 272

N

2+1

49 35 43 25 19

R [%] 1.0 1.1 1.5 4.4 7.0

Table 11.1: Uncorrected H1 data event distribution for �ve bins in Q

2

(cf. table 9.2). The p

?

t;jet

cut is not applied.

This assumption may be wrong by 10 to 20 %, but it is accurate enough for this purpose.

Table 11.1 shows the uncorrected observed event distribution in the �ve bins in Q

2

, with only

the #

jet

cut applied for y

c

= 0:02 and 0.03. The measured cross sections are derived from this

table by using.

N

ev

= � � L

int

(11.1)

They are shown in table 11.2 together with the NLO PROJET estimate for the PDF's MRSD

�

and MRSD

�

. The prediction for the total cross section is in the range of the measured values

in all bins in Q

2

, with MRSD

�

giving the higher values at low Q

2

and x. The (2+1)-jet cross

section prediction agrees quite well for Q

2

> 100 GeV

2

, whereas below more jets are seen in

the data than predicted by PROJET with the expectation being always lower for MRSD

�

than

for MRSD

�

. Consequently higher �

s

values than used in the integration are favoured.

This demonstrates the feasibility of the measurement, however several experimental un-

certainties are not covered here. At the moment the H1 Luminosity measurement has an

uncertainty of � 7%. This uncertainty is directly proportional to the error in �

s

and therefore

sets at this stage the lower limit of accuracy possible at the moment using this method.
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Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

y

c

= 0:02 H1-data �

tot

[pb] 13599 8770 7830 1397 672

�

2+1

[pb] 328 211 248 113 81.2

MRSD

�

�

tot

[pb] 11158 7610 7152 1317 603

�

2+1

[pb] 191 177 260 101 78.7

MRSD

�

�

tot

[pb] 15522 9603 8155 1350 589

�

2+1

[pb] 179 161 241 92.9 75.1

GRV �

tot

[pb] 17847 11007 9221 1445 590

�

2+1

[pb] 203 183 258 94.9 75.2

y

c

= 0:03 H1-data �

tot

[pb] 13205 8562 7659 1388 669

�

2+1

[pb] 129 92.4 114 61.5 46.7

MRSD

�

�

tot

[pb] 11148 7601 7142 1316 603

�

2+1

[pb] 102 94.4 144 60.0 50.9

MRSD

�

�

tot

[pb] 15508 9601 8153 1349 589

�

2+1

[pb] 91.8 85.5 128 55.5 49.3

Table 11.2: Uncorrected H1 data 'cross section' compared to PROJET. The H1 data cross

sections are derived from table 11.1, using equation 11.1, for a simple model of � � 1:0. The

PROJET NLO cross section predictions are shown for the PDF's MRSD

�

and MRSD

�

for

�

4;MS

= 215 MeV and for GRV for �

4;MS

= 200 MeV , the default values.
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11.5 The �

s

determination and systematic uncertainties

The theoretical expectation of PROJET for the default �

s

value in the PDF's roughly agree

with the observed number of events in the H1 experiment. However, the (2+1)-jet cross section

prediction is too low for both of the investigated PDF's. This indicates a higher value of �

s

than that used while �tting the PDF's. Here one word of clari�cation is needed.

A value for �

s

was already derived while �tting the PDF's to existing data. According to

the chosen strategy (cf. section 6.1) of this analysis �

s

is varied while �tting R

2+1

(Q

2

; y

c

). It

seems as if one has to perform a combined �t of �

s

and the PDF's to the H1 data, however

this is a higher order correction.

Schematically what is done while calculating the (2+1)-jet cross section is a convolution of

the PDF's with a matrix element.

b

O(�

2

) � PDF �ME

b

O(�

2

) �

�

�

�

i=p

+ �

s

(�

0

2

)�

1

i=p

�

�

�

�

s

(�

0

2

)A+ �

2

s

(�

0

2

)B

�

(11.2)

If one changes �

s

(�

0

2

) to �

s

(�

2

) only in the second term, as is done here while �tting �

s

, one

gets.

b

O(�

2

) �

�

�

�

i=p

+ �

s

(�

0

2

)�

1

i=p

�

�

�

�

s

(�

2

)A+ �

2

s

(�

2

)B

�

(11.3)

Inserting for �

s

(�

0

2

) a similar expression as equation 2.7, which can be derived by di�erentiation

with respect to � (cf. section 2.2), this can be written as

b

O(�

2

) �

 

�

�

i=p

+ �

s

(�

2

) �

"

1 +

�

0

4�

� log

�

0

2

�

2

� �

s

(�

2

)

#

�

1

i=p

!

�(�

s

(�

2

)A+�

2

s

(�

2

)B)(11.4)

By multiplying the two factors it is seen that to O(�

2

s

) there is no change. The correction

is formally to O(�

3

s

) because the parton densities are folded with a quantity which starts at

O(�

s

). Consequently there is no need to �t the PDF as well.

The result of the �t to �

s

is shown in �gure 11.8 assuming MRSD

�

is the correct PDF.

Figure 11.8 (a) shows the measured R

2+1

(Q

2

; y

c

) ratio corrected to the parton level (cf. ta-

ble 10.1) for y

c

= 0:02 and as a function of Q

2

. The errors are the statistical errors only. They

are obtained by adding in quadrature the statistical error from the data and the correction

factors. Unfortunately at this stage, due to lack of Monte Carlo statistics, the errors for the

correction factors are comparable to the statistical errors of the data. The lines are the PRO-

JET predictions for various values of �. This information is translated in �ve measurements

of �

s

, �gure 11.8 (b), using equation 6.1. Then the MINUIT program [50] is used to �t two

model assumptions (cf. equation 6.5). The horizontal band shows the �

s

value together with

its one standard deviation errors quoted by MINUIT

1

, for the assumption that �

s

is constant

and has no variation with Q

2

. The band which lies on top of the data is obtained in a similar

way, this time using the 2-loop �

s

expression equation 2.5 and �tting �. The solution taken

here is to integrate the cross sections for the �

4;MS

value which is quoted together with the

PDF (�

4;MS

= 215 MeV for MRSD

�

and MRSD

�

), to calculate from that the A

ij

(Q

2

; y

c

)

coe�cients (cf. section 6.1), and to vary �

s

in the �t program without integrating at every �

variation during the �t procedure. The consistency is checked by integrating using PROJET

for �

4;MS

= 400 MeV and �tting �

s

again.

1

A one standard deviation error of a parameter in MINUIT is de�ned as follows. The parameter is varied

around the �tted value in a range corresponding to a change in �

2

min

of �1. The corresponding change in the

parameter is quoted as it's error, which may be asymmetric.
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Figure 11.8: �

s

�t using MRSD

�

at y

c

= 0:02. The full points represent the H1 measurement

corrected to the parton level, the PROJET prediction in (a) are the small crosses connected

by lines for di�erent values of �

4;MS

. The results of the �ts in (b) are shown as bands of the

�tted values and the � 1 standard deviation parameter error lines. Errors on the data are only

statistical. The open circle is the mean value of �

s

obtained by the particle data group together

with its error (cf. table 1.1).

(a) The R

2+1

(Q

2

; y

c

) jet rate as a function of Q

2

at y

c

= 0:02, together with the PROJET

prediction for MRSD

�

at various � values.

(b) The �

s

measurement, together with two �t scenarios. For both the �t value and the �1�

curves are displayed. The two scenarios are �

s

= const and running �

s

using equation 2.5.
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The �

s

result in �gure 11.8 is the same, leading to a di�erence in �

4;MS

of 2 MeV . This

error, due to the chosen cpu time saving strategy, is neglected.

The data unambiguously favours the running of �

s

. Extrapolating to the mass of the Z

�

one gets �

s

(M

2

z

) = 0:119

+ 0:004

� 0:005

. The �t has a reasonable probability leading to �

2

=dof = 0:58,

whereas the assumption of �

s

being constant is unlikely, giving �

2

=dof = 3:88

2

.

This shows for the �rst time a result consistent with the running of �

s

using one observable

in one single experiment operated at a constant center of mass energy of the accelerator.

The systematic uncertainties are discussed next, always taking conservative estimates of the

systematic errors.

11.5.1 Dependence on jet requirements and energy scale

This section deals with the uncertainty of �

s

by di�erent selection criteria and its dependence

on the hadronic energy scale. As long as one stays in the perturbative regime the change

in R

2+1

(Q

2

; y

c

) by changing the requirements should be described by PROJET, leaving �

s

unchanged.

In the following, three subjects will be discussed.

� The dependence of �

s

on y

c

� The dependence of �

s

on the p

?

t;jet

cut

� The dependence on the hadronic energy scale

Figure 11.9 shows the �

s

�t using MRSD

�

at y

c

= 0:03. The statistical precision gets weaker

due to the rapid drop in R

2+1

(Q

2

; y

c

) with y

c

. The �t leads to �

s

(M

2

z

) = 0:124

+ 0:006

� 0:007

which is

higher than the value obtained at y

c

= 0:02. From this di�erence (cf. table 11.3) a y

c

error on

�

s

as half the spread of the measurements without p

?

t;jet

cut is derived ��

s

(M

2

z

) = 0:003.

In the last two �gures the p

?

t;jet

cut was not applied. At least in the two lowest Q

2

bins

there are good reasons to introduce this hard scale (cf. section 10.2). The uncertainty due to

this cut is demonstrated in �gure 11.10 which shows the �t analogous to �gure 11.8 but this

time applying the p

?

t;jet

cut. The obtained value is �

s

(M

2

z

) = 0:116

+ 0:006

� 0:007

. This is a bit lower

than in �gure 11.8. From table 11.3 an error of ��

s

(M

2

z

) = �0:003 is derived from the full

spread for y

c

= 0:02 within MRSD

�

. To summarize, using the table 11.3, it can be stated that

the errors are of the order of the actual statistical precision.

The hadronic energy scale of the LAr detector is at present known to an accuracy of � 5%.

The e�ect of the hadronic energy scale only partly cancels in the jet algorithm while dividing

m

2

ij

by W

2

. m

2

ij

depends quadratically on the energy scale because it contains E

i

� E

j

, W

2

has only a linear dependence on the energy scale. No matter how one calculates W

2

it always

contains an energy from the initial proton or electron (cf. equation 3.11 and 10.1). Therefore

the jet rates depend linearly on the hadronic energy scale. The e�ect of this is studied by

rescaling of the hadronic energy by �5% and recalculating the jet rate. The error on the jet

rate is � 7% leading to an uncertainty in �

s

of ��

s

(M

2

z

) =

+0:006

� 0:007

.

In all these considerations, it is assumed that MRSD

�

is the correct PDF, which isn't

the case. Measurements of F

2

at HERA have shown that for the inclusive cross section the

parametrization MRSD

�

is favoured [19]. The impact of the PDF choice is evaluated in the

next section.

2

The model assumption of a constant �

s

is shown only for illustration. This model is not a consistent

description, because in the PROJET expectation also those terms of the matrix elements which would not exist

if �

s

were constant are considered.
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Figure 11.9: �

s

�t using MRSD

�

at y

c

= 0:03. The ordering of the �gures and the de�nitions

are as in �gure 11.8.

PDF y

c

p

?

t;jet

[GeV] �

s

(M

2

z

) �

4;MS

[MeV ] �

2

=dof

MRSD

�

0.02 0:119

+ 0:004

� 0:005

345

+ 80

� 74

0.58

0.02 5 0:116

+ 0:006

� 0:007

289

+ 104

� 91

0.44

0.03 0:124

+ 0:006

� 0:007

433

+ 139

� 129

0.61

0.03 5 0:119

+ 0:007

� 0:008

335

+ 140

� 121

0.38

MRSD

�

0.02 0:135

+ 0:004

� 0:004

673

+ 105

� 105

1.72

0.02 5 0:131

+ 0:006

� 0:007

575

+ 155

� 147

1.50

0.03 0:138

+ 0:006

� 0:007

763

+ 171

� 174

1.64

0.03 5 0:131

+ 0:007

� 0:008

585

+ 185

� 176

1.38

GRV 0.02 0:135

+ 0:004

� 0:004

681

+ 107

� 108

1.75

0.02 5 0:131

+ 0:006

� 0:007

577

+ 158

� 150

1.51

Table 11.3: �

s

�ts for various scenarios without � cut.
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Figure 11.10: �

s

dependence on the p

?

t;jet

cut. p

?

t;jet

> 5 GeV is required. The ordering of the

�gures and the de�nitions are as in �gure 11.8.
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11.5.2 Dependence on parton densities

At HERA an unmeasured region in � is explored. The uncertainty in the PDF's in this regime

� < 10

�2

is large as can be seen from �gure 3.8.

The inuence on the �tted �

s

value is shown in �gure 11.11 using the same requirements

as in �gure 11.8 but this time using MRSD

�

as PDF. This �t leads to a value of �

s

(M

2

z

) =

0:135 � 0:004. This is signi�cantly di�erent to the value obtained in �gure 11.8. The reason

Figure 11.11: �

s

�t using MRSD

�

at y

c

= 0:02. The ordering of the �gures and the de�nitions

are as in �gure 11.8.

being mainly the uncertainty in the total cross section (cf. table 11.2) in the low Q

2

bins. Here

the measured R

2+1

(Q

2

; y

c

) lies signi�cant above the MRSD

�

prediction. In this region however

the sensitivity to �

s

is largest (cf. �gure 2.3). The uncertainty of the R

2+1

(Q

2

; y

c

) rate is in

the order of 55% for Q

2

= 13:5 GeV

2

decreasing to 10% at Q

2

= 234 GeV

2

(cf. Bin 1 and 4 of

table 11.2). The prediction for the (2+1)-jet cross section however, di�er only by 11% and 8%

in the same Q

2

range.

As already discussed in section 6.3 this can be circumvented by applying a � cut for the

(1+1)-jet events, which in this case is equivalent to a x cut. The chosen cut is � > 10

�2

for

the (1+1)-jet events, the (2+1)-jet events are una�ected by this. For the two lowest Q

2

bins,

x < 10

�2

(cf. �gure 9.1), so they are lost due to this cut. The �gures 11.12 and 11.13 show

the result of this cut using MRSD

�

and MRSD

�

. Because it only acts on the denominator and
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Figure 11.12: �

s

�t using MRSD

�

at y

c

= 0:02 and � > 0:01. The ordering of the �gures and

the de�nitions are as in �gure 11.8.

gives a stronger reduction in the lower Q

2

range, the jet rate now decreases as a function of

Q

2

. The results of the �ts are �

s

(M

2

z

) = 0:123

+ 0:009

� 0:010

for MRSD

�

and �

s

(M

2

z

) = 0:120

+ 0:009

� 0:010

for MRSD

�

. The statistical precision gets weaker, but now the dependence on the PDF is

nearly gone (cf. table 11.4). Although the jet rates are totally di�erent compared to the ones

without the � cut the �

s

values agree within statistical errors. This can be seen by comparing

the �gures 11.8 and 11.13. However MRSD

�

still gives the higher value. From table 11.4 an

error due to the PDF uncertainty is derived as the spread of the extreme values without the

p

?

t;jet

cut, leading to ��

s

(M

2

z

) = �0:003.

11.5.3 Dependence on the renormalization and factorization scale

In section 2.2 it was discussed that the main uncertainty in the LEP measurement of �

s

, from jet

rates in the E0 scheme by using �xed order calculation, is due to the unknown renormalization

scale. In ep- scattering one has to deal with this uncertainty as well and in addition to that

with the factorization scale dependence.

Figure 11.14 shows the change of the (2+1)-jet cross section and the R

2+1

(Q

2

; y

c

) jet rate as

a function of the variation in the scales. The PROJET integration is performed using MRSD

�
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Figure 11.13: �

s

�t using MRSD

�

at y

c

= 0:02 and � > 0:01. The ordering of the �gures and

the de�nitions are as in �gure 11.8.

for Q

2

> 100 GeV

2

. The variation is done using.

� = % Q �

f

= %

f

Q (11.5)

They are chosen as multiples of Q because in the renormalization of the q vertex the scale in

�

s

(�

2

) depends on Lorentz invariants, which all are of the order of Q

2

. Choosing for example

W

2

as renormalization scale is therefore strongly disfavoured. Five values of % and %

f

for �

2

and �

2

f

are considered (1/5, 1/2, 1, 2, 5). A priori it is not clear in what range one should vary

the scales. In order to stay safely in the perturbative regime of DIS scattering only scales in �

2

above 10 GeV

2

are considered, otherwise �

s

(�

2

) gets to large and one leaves the perturbative

regime of DIS.

The uncertainty of R

2+1

(Q

2

; y

c

) due to the unknown factorization scale �gure 11.14 (d) is

found to be of the order of 2%, which is negligible at the present state of statistical accuracy

and the factorization scale will not be discussed further here.

The renormalization scale, however, is seen to be important, although the scale dependence

has been considerably reduced by including the NLO coe�cient of the perturbative expansion

(cf. �gure 11.14 (a, b)). The uncertainty in the (2+1)-jet cross section in NLO is 20% over the

whole range compared to 82% in the LO matrix element terms. The corresponding uncertainty

of �

s

due to this is studied next.
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PDF y

c

p

?

t;jet

[GeV] �

s

(M

2

z

) �

4;MS

[MeV ] �

2

=dof

MRSD

�

0.02 0:120

+ 0:009

� 0:010

363

+ 179

� 144

0.81

0.02 5 0:114

+ 0:011

� 0:012

259

+ 184

� 131

0.65

MRSD

�

0.02 0:123

+ 0:009

� 0:010

421

+ 193

� 160

0.98

0.02 5 0:117

+ 0:011

� 0:012

311

+ 206

� 152

0.78

GRV 0.02 0:121

+ 0:009

� 0:009

383

+ 176

� 145

0.87

0.02 5 0:116

+ 0:011

� 0:011

288

+ 189

� 140

0.68

Table 11.4: �

s

�ts using the high � region � > 0:01 for various parton densities. In addition to

the ones discussed in the text GRV is included as well.

If one tries to �t for low % values one encounters problems with the convergence of the �t

in the lowest Q

2

bins and perturbative QCD is no longer applicable. Therefore the inuence

is studied by using the bins 4 and 5 alone and % is varied from 1/2 up to 2, meaning that

the lowest �

2

reached in this procedure is 25 GeV

2

. Figure 11.15 shows as an example the

�

s

�t for % = 1=2. The results are displayed in table 11.5, for three di�erent values of % and

using MRSD

�

. The scale error is derived as half the spread of the �

s

values and amounts to

��

s

(M

2

z

) = 0:006. This concludes the systematic investigations made so far.

% �

s

(M

2

z

) �

4;MS

[MeV ] �

2

=dof

1/2 0:114

+ 0:010

� 0:010

257

+ 157

� 120

1.56

1 0:118

+ 0:010

� 0:011

331

+ 197

� 149

1.47

2 0:125

+ 0:012

� 0:012

457

+ 272

� 204

1.47

Table 11.5: �

s

dependence on the renormalization scale �

2

for MRSD

�

, at y

c

= 0:02, � > 0:01

and Q

2

> 100 GeV

2

.
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Figure 11.14: The scale dependencies of NLO cross sections using MRSD

�

at y

c

= 0:02 for Bin

4 and 5. The p

?

t;jet

cut and the #

jet

cut are applied. The scales are varied as multiples of Q,

with % and %

f

being the scale factors. For illustration the scale dependencies of the LO matrix

element term in the (2+1)-jet cross section is shown as well.

(a) The (2+1)-jet cross section variation as a function of %.

(b) The R

2+1

(Q

2

; y

c

) variation as a function of %.

(c) The (2+1)-jet cross section variation as a function of %

f

.

(d) The R

2+1

(Q

2

; y

c

) variation as a function of %

f

.
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Figure 11.15: �

s

�t using MRSD

�

at y

c

= 0:02 for % = 1=2. The ordering of the �gures and

the de�nitions are as in �gure 11.8.
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11.5.4 Summary of the systematic investigations on �

s

The variation of the �tted �

s

value in the various chosen scenarios is displayed in �gure 11.16

separately for MRSD

�

(a) and MRSD

�

(b).

Figure 11.16: Systematic investigations of the �

s

measurement.

The value of �

s

quoted as the measurement from jet rates at H1 is derived as the mean

value of the three measurements displayed in table 11.4 without the p

?

t;jet

cut. The errors are

as discussed in the last sections.

This is a preliminary result, because not all uncertainties have been studied fully yet. For

example, the correction factors are taken only from LEPTO. No other QCD inspired event

generator has been used so far to obtain these correction factors. Especially in the low Q

2

region one deals with jets of low energy and low transverse momenta, which may be sensitive

to the details of the underlying QCD process and the fragmentation as modeled by the event

generators. Taking into account di�erent models the systematic error of the correction factors,

which due to the use of a single generator at the moment is neglected, will increase. That

means in turn, that the current systematic error on �

s

may be underestimated.

In �gure 11.17 the measurement obtained by this analysis is compared to the LEP results

discussed in section 2.2, showing how precise the H1 measurement already is at this early stage

of data taking.



114 CHAPTER 11. RESULTS

Figure 11.17: The preliminary �

s

measurement from jet rates at H1. For comparison the

measurements from jet rates at LEP discussed in section 2.2 are given.



Chapter 12

Conclusions

A detailed jet analysis on the 1993 H1 data corresponding to an integrated luminosity of

L

int

� 0:4 pb

�1

is performed using a modi�ed JADE jet algorithm in which the proton remnant

is included in the clustering procedure. This algorithm is found to be well suited for a jet

de�nition in ep scattering, giving a good correlation between jets obtained on the detector level

with those obtained from the underlying partonic structure. This concerns the jet rates and

the jet four vectors in terms of #

jet

and p

?

t;jet

. The obtained resolutions for Q

2

> 100 GeV

2

are

a 18% p

?

t;jet

resolution and 3:4

�

in polar angle.

This good agreement between observed jets and the underlying QCD process allows the

data to to be corrected to the partonic level using an event generator. For this purpose at the

moment only one QCD inspired generator, LEPTO61, based on LO jet cross sections, is used.

The corrected data are compared to a NLO calculation implemented in a jet cross section

Monte Carlo program PROJET. With this QCD prediction the measured jet rate R

2+1

(Q

2

; y

c

)

can be translated to several measurements of the strong coupling constant �

s

(�

2

) using only

one observable in a single experiment. Extrapolating the measured �

s

(�

2

) values to �

2

= M

2

z

,

hereby taking in case of asymmetric errors always the higher value leads to

�

s

(M

2

z

) = 0:121 � 0:010 (stat) � 0:003 (y

c

) � 0:003 (p

?

t;jet

)

�0:007 (E

had

) � 0:003 (PDF ) � 0:006 (�

2

) :

Adding the errors in quadrature gives �

s

(M

2

z

) = 0:121 � 0:015.

This �

s

(M

2

z

) determination has the great advantage that it is possible to see the running of

�

s

(�

2

) using one observable in a single experiment and that the QCD prediction of the RGE

can be precisely veri�ed in future.

At the moment the measurement su�ers from low data statistics and the uncertainty in the

PDF which restricts the measurement to much larger values in Q

2

than can be observed in the

experiment. However, these two things interplay. If one could use the whole Q

2

range to �t

�

s

(�

2

) with the present statistics and no PDF uncertainty one could measure �

s

(M

2

z

) already

with an statistical error of 0.005.

In future this measurement will be improved in two ways. New PDF's will be �tted to the

F

2

measurements at HERA which in turn can be used to perform the �

s

(�

2

) determination at

lower Q

2

values, and the coming higher luminosity runs of HERA will reduce the statistical

error. Then theoretical uncertainties, such as the scale uncertainty will set the limit on the

�

s

(M

2

z

) measurement which is, as outlined in this work, suited to give a very precise �

s

(M

2

z

)

measurement in the future.
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