

- 1. Einführung
- 2. Beschleuniger
- 3. Detektoren
- 4. Bewegungsgleichungen und Symmetrien
- 5. Das Quark-Modell und die CKM-Matrix
- 6. CP-Verletzung im Standardmodell
- 7. Proton- und Photonstrukturfunktionen
- 8. Elektroschwache Präzisionsmessungen
- 9. Neutrino-Massen und Neutrino-Oszillationen

Das Wu Experiment - die Händigkeit von Teilchen

- Die untersuchte Reaktion ist: ${}_{27}^{60}$ Co $(J = 5) \rightarrow {}_{28}^{60}$ Ni^{*} $(J = 4) e^- \bar{\nu}_e$. Deswegen muss das System aus e^- und $\bar{\nu}_e$ den Spin J = 1 haben.
 - Das Ausrichten der Co Kerne erfolgt durch ein starkes Magnetfeld bei niedriger Temperatur.
 - Die Polarisation des Co Targets wird durch die Anisotropie der ausgestrahlten Photonen des angeregten Nickel Kerns mit Hilfe von NaJ Szintillatoren gemessen.
 - Die auslaufenden Elektronen werden durch Szintillationslicht in einem Anthrazen Kristall nachgewiesen.

Die Elektronen werden bevorzugt entgegengesetzt zum Kernspin ausgestrahlt. Elektronen sind also bevorzugt Linkshänder $\vec{s}_e \uparrow \downarrow \vec{p}_e$ und keine Rechtshänder, $\vec{s}_e \uparrow \uparrow \vec{p}_e$.

Die Schwache Wechselwirkung unterscheidet also zwischen Rechts und Links.

Einblicke in die Teilchenphysik

UCITE ROD

41.5 cm

UMPING TUBE FOR ACUUM SPACE

SS 2003 Uni Augsburg

T08

Richard Nisius

Page 2

Das Wu Experiment - die Paritätsverletzung

- Die Paritätstransformation dreht den Impuls um: $P | \vec{p_e} \rangle = - | \vec{p_e} \rangle$, aber nicht den Spin,

$$P|\vec{s}_e\rangle = |\vec{s}_e\rangle$$
 und $P|\vec{J}\rangle = |\vec{J}\rangle$.

- Masselose, $\beta \equiv c$, Fermionen sind Linkshänder,
 - $\vec{s}_f \uparrow \downarrow \vec{p}_f$, Antifermionen sind Rechtshänder $\vec{s}_{\bar{f}} \uparrow \uparrow \vec{p}_{\bar{f}}$.
- Bei massiven Fermionen ist die falsche Händigkeit mit β unterdrückt, $\langle \lambda_f \rangle = -\frac{1}{2}\beta_f$, mit $\lambda = \frac{\vec{s}\vec{p}}{|\vec{p}|}$.
- Ein weiteres Beispiel für diese Unterdrückung ist der Pion-Zerfall, $s_{\pi} = 0$, bei dem die geladenen Leptonen mit der falschen Händigkeit auftreten müssen.

- Wegen $\frac{m_{\mu}}{m_{e}} pprox 200$ ist $\beta_{e} \gg \beta_{\mu}$ und deswegen der Zerfall in Elektronen stärker unterdrückt.

Das Wu Experiment ist die Manifestation der Paritätsverletzung in der schwachen WW.

T08

Die Grundlagen des elektroschwachen Standardmodells

- Die linkshändigen Dubletts $\begin{pmatrix} \nu_e \\ e \end{pmatrix} \begin{pmatrix} u \\ d' \end{pmatrix}$ bekommen nun ihre tiefere Bedeutung.

Sie sind Eigenzustände zum schwachen Isospin mit $I_3 = +\frac{1}{2}(-\frac{1}{2})$ für oben (unten).

- Zusätzlich gibt es noch rechtshändige Singuletts, $I_3 = 0$, z.B. e_R , außer für die Neutrinos.
- Weiterhin wird den Teilchen eine schwache Hyperladung Y zugeordnet, sodass die Beziehung $Q = I_3 + \frac{Y}{2}$ erfüllt ist. d' d'_R น u_R u_e e_R $I_3 \quad \frac{1}{2} \quad -\frac{1}{2} \quad 0$ $\frac{1}{2}$ $\frac{1}{3}$ Damit ergibt sich die folgende Zu-0 -1 -2 ordnung der Quantenzahlen zu den **Y** -1 Fermionen der ersten Generation: -1 -1 \boldsymbol{O} 0

- Die Eichgruppe $U(1)_Y imes {SU(2)_L \over L}$ koppelt mit den Eichbosonen B_μ und $ec{W}_\mu$ an die

Ströme j_{Y}^{μ} und \vec{j}_{L}^{μ} der Hyperladung Y und des schwachen Isospins I. Die Kopplungs-

nicht B_{μ} und \vec{W}_{μ} , sondern W^{\pm} , Z und γ .

Im Glashow-Weinberg-Salam Modell werden die physikalischen Zustände konstruiert.

Die Fermion-Boson Kopplungen im GSW Modell

- Die physikalischen Zustände, W^{\pm} , Z und γ sind Linearkombinationen aus B_{μ} und $W_{\mu i}$.

$$\begin{split} W_{\mu}^{\pm} &= \frac{1}{\sqrt{2}} (W_{\mu 1} \pm W_{\mu 2}) \\ Z_{\mu} &= -B_{\mu} \sin \theta_{W} + W_{\mu 3} \cos \theta_{W} \\ A_{\mu} &= -B_{\mu} \cos \theta_{W} + W_{\mu 3} \sin \theta_{W} \end{split} \qquad \begin{array}{l} B_{\mu} &= -Z_{\mu} \sin \theta_{W} + A_{\mu} \cos \theta_{W} \\ \Rightarrow \\ W_{\mu 3} &= -Z_{\mu} \cos \theta_{W} + A_{\mu} \sin \theta_{W} \end{split}$$

- Der Weinberg Winkel mischt die Eichbosonen derart, dass das Photon masselos wird, das Z-Boson aber eine Masse erhält. Dieser Higgs-Mechanismus wird später in einer separaten Vorlesung behandelt.
- Die Wechselwirkungen werden durch Terme der folgenden Form beschrieben.

 $\mathsf{H} = -i \cdot \mathsf{Kopplungskonstante} \cdot \mathsf{Ladungs}\operatorname{-Strom} \cdot \mathsf{Boson}\operatorname{-Feld}$

- Die Aufgabe ist nun, in $H_{\text{neutral}} = H_{L3} + H_Y$ die unphysikalischen Felder B_{μ} und $W_{\mu3}$ durch die physikalischen Bosonen Z_{μ} und A_{μ} zu ersetzen.

Vereinigung von elektromag. und schwacher Kraft

$$-\operatorname{Aus} \quad H_{\text{neutral}} = H_{L3} + H_{Y} = -ig \, j_{L3}^{\mu} W_{\mu 3} - i \frac{g'}{2} \, j_{Y}^{\mu} B_{\mu} \quad \text{folgt mit}$$

$$B_{\mu} = -Z_{\mu} \sin \theta_{W} + A_{\mu} \cos \theta_{W} \quad \text{und} \quad W_{\mu 3} = Z_{\mu} \cos \theta_{W} + A_{\mu} \sin \theta_{W}$$

$$\boxed{H_{\text{neutral}} = -i(g \sin \theta_{W} j_{L3}^{\mu} + g' \cos \theta_{W} \frac{j_{Y}^{\mu}}{2})}_{\text{elm}} A_{\mu} - i(g \cos \theta_{W} j_{L3}^{\mu} - g' \sin \theta_{W} \frac{j_{Y}^{\mu}}{2})}_{NC} Z_{\mu}$$

– Der Vergleich des ersten Terms mit $H_{
m elm}=-ie\,j^{\mu}_{
m elm}A_{\mu}$ und $ej^{\mu}_{
m elm}=ej^{\ \mu}_{L3}+erac{1}{2}j^{\mu}_{Y}$ liefert

die Vereinigung der Kopplungen

$$\boldsymbol{e} = \boldsymbol{g} \sin \theta_W = \boldsymbol{g'} \cos \theta_W.$$

— Der zweite Term wird weiter umgeformt:

$$egin{aligned} H_{ ext{NC}} &= -i \Big(g \cos heta_W j^{\,\mu}_{L3} - g rac{\sin^2 heta_W}{\cos heta_W} \left[j^{\,\mu}_{ ext{elm}} - j^{\,\mu}_{L3}
ight] \Big) \, Z_\mu \ &= -i rac{g}{\cos heta_W} \left[j^{\,\mu}_{L3} - \sin^2 heta_W j^{\,\mu}_{ ext{elm}}
ight] \, Z_\mu \end{aligned}$$

- Damit ist die Z_{μ} Wechselwirkung zu $H_{\rm NC} = -i \frac{g}{\cos \theta_W} j^{\mu}_{\rm NC} Z_{\mu}$ mit dem Strom $j^{\mu}_{\rm NC} = j^{\mu}_{L3} - \sin^2 \theta_W j^{\mu}_{\rm elm}$ festgelegt.

Im GWS Modell sind die elektromagnetische und die schwache Wechselwirkung vereinigt.

- $-\operatorname{Mit} \, j_{L3}^{\mu} = \bar{\Psi}\gamma^{\mu} \frac{1}{2} \left(1 \gamma^{5}\right) I_{3}\Psi \text{ und } j_{\text{elm}}^{\mu} = \bar{\Psi}\gamma^{\mu}Q\Psi \text{ folgt für } j_{\text{NC}}^{\mu} = j_{L3}^{\mu} \sin^{2}\theta_{W}j_{\text{elm}}^{\mu}$ $j_{\text{NC}}^{\mu} = \bar{\Psi}\gamma^{\mu} \frac{1}{2} \left[\left(1 \gamma^{5}\right)I_{3} 2\sin^{2}\theta_{W}Q \right] \Psi = \bar{\Psi}\gamma^{\mu} \frac{1}{2} \left[\left(I_{3} 2\sin^{2}\theta_{W}Q\right) \gamma^{5}I_{3} \right] \Psi.$
- Wegen des Transformationsverhaltens von $V \equiv \bar{\Psi} \gamma^{\mu} \Psi$ und $A \equiv \bar{\Psi} \gamma^{\mu} \gamma^{5} \Psi$ bezeichnet man die Wechselwirkung als V A Wechselwirkung und die Kopplungen dementsprechend mit $g_{V} \equiv (I_{3} 2 \sin^{2} \theta_{W} Q)$ und $g_{A} \equiv I_{3}$, also $\sin^{2} \theta_{W} = \frac{1}{4} \left(1 \frac{g_{V}}{g_{A}}\right)$.
- Der Axialvektorstrom koppelt also nur an linkshändige Fermionen, der Vektorstrom aber sowohl an links- als auch an rechtshändige Fermionen.
- Mit der Definition $g_{V,A} = g_L \pm g_R$ folgt $\frac{1}{2} \left(g_V g_A \gamma^5 \right) = g_L \frac{1}{2} \left(1 \gamma^5 \right) + g_R \frac{1}{2} \left(1 + \gamma^5 \right)$
- In der Weyl-Darstellung der Gamma Matrizen ist $\gamma^5 \equiv \begin{pmatrix} -I & 0 \\ 0 & I \end{pmatrix}$, damit gilt $P_L \equiv \frac{1}{2} \left(I - \gamma^5 \right) = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$ und $P_R \equiv \frac{1}{2} \left(I + \gamma^5 \right) = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix}$.
- Dies sind die Projektoren der links- und rechtshändigen Komponenten χ und ϕ des Spinors $\Psi = \begin{pmatrix} \chi \\ \phi \end{pmatrix}$ mit $P_L \Psi = \chi$ und $P_R \Psi = \phi$.

Wegen des QED Anteils koppelt $j_{\rm NC}^{\ \mu}$ auch an rechtshändige Fermionen.

Dies ist das Resultat kontinuierlicher Messungen über mehrere Jahrzehnte.

SS 2003 Uni Augsburg

Der Zerfälle des Z-Bosons

Die Aufgabe besteht darin, die Zerfallskanäle zu erkennen und die Ereignisse zu zählen.

Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg

Die Anregungskurve des Z-Bosons im Standardmodell

 σ_{had} [nb] σ^0 **40** ALEPH DELPHI L3 OPAL 30 $\Gamma_{\mathbf{z}}$ 20 measurements, error bars increased by factor 10 10 σ from fit QED unfolded M_{z} 86 88 90 **92** 94 E_{cm} [GeV]

Die Z-Anregungskurve

Im Standardmodell wird die Z-Resonanz durch die Shape Parameter, m_Z , Γ_Z , σ_h^0 , die Verzweigungsverhältnisse, R_e , R_μ , R_τ , und die Forwärts-Rückwärts Asymmetrien, $A_{\rm FB}^e$, $A_{\rm FB}^\mu$, $A_{\rm FB}^\tau$, bestimmt.

$$egin{aligned} \sigma_h^0 &= rac{12\,\pi}{m_Z^2} rac{\Gamma_{
m ee}\Gamma_{
m had}}{\Gamma_Z^2} \ R_e &= rac{\Gamma_{
m had}}{\Gamma_{
m ee}}, \ R_\mu &= rac{\Gamma_{
m had}}{\Gamma_{\mu\mu}}, ext{und} \ R_ au &= rac{\Gamma_{
m had}}{\Gamma_{ au au}} \ A_{
m FB}^f &= rac{3}{4} \ A_e \ A_f \ {
m mit} \ A_f &= rac{2g_{vf}g_{af}}{g_{vf}^2 + g_{af}^2} \end{aligned}$$

 Dieser Satz von Parametern hat die kleinsten Korrelationen und ist deswegen optimal zur Kombination der Resultate der vier LEP Experimente.

Im LEPI Programm von 1989-1995 wurden diese Parameter mit großer Genauigkeit bestimmt.

SS 2003 Uni Augsburg

Messung der Forward-Backward Asymmetrie

Es gibt Messungen für alle Lepton- und Quarksorten an vielen Energiepunkten.

Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg

T08

R

Page 11

Der Test der Lepton-Universalität

- Im Falle der Leptonuniversaliät gilt:
 - 1) $R_e = R_\mu = R_\tau \equiv R_\ell = \frac{\Gamma_{\text{had}}}{\Gamma_{\ell\ell}}$ 2) $A_{\text{FB}}^e = A_{\text{FB}}^\mu = A_{\text{FB}}^\tau \equiv A_{\text{FB}}^\ell$
- Nach Anbringen von Massenkorrekturen wegen $m_e: m_\mu: m_\tau \approx 1:200:3500$, ist die Lepton-Universalität in sehr guter Näherung erfüllt.

$$egin{aligned} R_\ell &= 20.767 \pm 0.025 \ A_{
m FB}^\ell &= 0.0171 \pm 0.0010 \end{aligned}$$

- Das bedeutet:
 - 1) Das Z zerfällt zu 10% in geladene Leptonen.
 - 2) Die Lepton-Asymmetrie

$$A_{\mathrm{FB}}^{\ell} = rac{N_{\mathrm{F},\ell} - N_{\mathrm{B},\ell}}{N_{\mathrm{F},\ell} + N_{\mathrm{B},\ell}}$$
 beträgt 1.7%.

- Damit reduziert sich der Satz auf 5 Parameter: m_Z , Γ_Z , σ_h^0 , R_ℓ , A_{FB}^ℓ .

Alle Leptonen koppeln mit der gleichen Stärke an das Z-Boson.

- Aus der unsichtbaren Breite der Z-Resonanz kann man die Anzahl der Generationen leichter Neutrinos bestimmen: $\Gamma_{inv} = \Gamma_{Z} \Gamma_{had} \Gamma_{had} (\frac{1}{R_{e}} + \frac{1}{R_{\mu}} + \frac{1}{R_{\tau}}).$
- Die hadronische Breite $\Gamma_{
 m had}$ erhält man aus σ_h^0 unter Benutzung von $\Gamma_{
 m Z},\,m_Z$ und $R_e,$

$$\Gamma_{\text{had}} = \left(\frac{\sigma_h^0 m_Z^2 \Gamma_Z^2 R_e}{12 \pi}\right)^{\frac{1}{2}} = m_Z \Gamma_Z \left(\frac{\sigma_h^0 R_e}{12 \pi}\right)^{\frac{1}{2}}$$
$$= \Gamma_Z \cdot 0.70 = 1.744 \text{ GeV}$$
$$\boxed{\Gamma_{\text{inv}} = 0.499 \text{ GeV}}$$

 Damit ist das Verhältnis der unsichtbaren zur leptonischen Breite :

$$rac{\Gamma_{
m inv}}{\Gamma_{\ell\ell}} = rac{\Gamma_{
m inv}}{\Gamma_{
m had}} / rac{\Gamma_{\ell\ell}}{\Gamma_{
m had}} = 5.942$$

— Die Standardmodellvorhersage ist:

$$rac{\Gamma_{
u
u}}{\Gamma_{\ell\ell}} = 1.991 \quad \Rightarrow \quad N_
u = 3$$

Es gibt drei Generationen leichter Neutrinos.

Einblicke in die Teilchenphysik

Die Masse und Breite des Z-Bosons

Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg

T08

- Die Energie lässt sich durch resonante Depolarisation des Elektronstrahls sehr genau messen $f_{\text{depol}} = \left(\frac{g_e 2}{2m_e c^2}\right) \cdot E_{\text{b}}$. Dies liefert $\sigma_{E_{\text{b}}} = 0.2 \text{ MeV}$.
- Diese Methode funktioniert aber nur ohne Strahlkollisionen. Die Bestimmung der Energie während Strahlkollisionen erfordert eine Extrapolation unter genauer Kenntnis des B-Felds.
- Die Länge der Umlaufbahn ist durch die Frequenz der Beschleunigerelemente festgelegt.
 Die Energie bestimmt sich durch das integrale Magnetfeld senkrecht zur Teilchenbahn pro Umlauf.

- Das Magnetfeld wird mit NMR Proben gemessen und der Ort des Teilchendurchgang durch elektrostatische Strahlmonitore.
- Die Sensitivität der Strahlenergie auf äußere Effekte ist so groß, dass kleinste Effekte wahrgenommen werden können.

Beispiele sind:

Flux Loop

- Die Variation der Gravitation bei der Mondbewegung
- Verlustströme der französisch-schweizerischen Eisenbahnen.

Die genaue Kenntnis des B-Felds ist unabdingbar.

... von Sonne, Mond ...

Der Effekt

- Sonne und Mond erzeugen nicht nur Ebbe und Flut sondern deformieren die Erde derart, dass sich die Länge des LEP Rings ändert. Die Längenänderung des Ringes beträgt etwa $\Delta L/L \approx 10^{-8}$ also $\Delta L = 270 \mu m$.

Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg

T08

Richard Nisius

Page 16

 Bei der Rückführung des Antriebsstroms der Züge über die Bahngleise gibt es Verluste die als parasitäre Ströme über den LEP-Ring laufen. Diese Ströme (ca. 1A bei 2000A Magnetstrom) stören die Magnetisierung der Dipolmagnete und ändern deren Magnetfeld.

Der LEP Beschleuniger ist ein etwas unhandlicher Zugfahrplan für Reisende aus Genf.

Der schwache Mischungswinkel

- Am SLAC wurden polarisierte Elektronenstrahlen mit $|P_e| \approx 75\%$ und Positronstrahlen zur Kollision gebracht.

$$P_e = rac{R-L}{R+L} = egin{cases} -1 & ext{alle Links} \ 0 & ext{Rechts} = ext{Links} \ 1 & ext{alle Rechts} \end{cases}$$

 Die Asymmetrie der Wirkungsquerschnitte f
ür links- und rechtsh
ändige Elektronen ist:

$$A_{\rm LR} = \frac{1}{|P_e|} \frac{N_{\rm L} - N_{\rm R}}{N_{\rm L} + N_{\rm R}} = \frac{g_L^2 - g_R^2}{g_L^2 + g_R^2} = \frac{2g_V g_A}{g_V^2 + g_A^2} = A_e,$$

da $g_{V,A} = g_L \pm g_R$. Ausserdem gilt: $\sin^2 \theta_W = \frac{1}{4} \left(1 - \frac{g_V}{g_A} \right).$
- Die link/rechts forward/backward Asymmetrie ist:
 $\tilde{A}_{\rm FB}^{\ell} = \frac{4}{3|P_e|} \frac{(N_{\rm LF} - N_{\rm LB}) - (N_{\rm RF} - N_{\rm RB})}{(N_{\rm LF} + N_{\rm LB}) + (N_{\rm RF} + N_{\rm RB})} = A_l, A_{\rm FB}^{\ell} = \frac{3}{4} A_e A_\ell$
- Die Winkelverteilung ergibt sich zu:
 $\frac{d\sigma}{d\cos\theta} = C \left[(1 - P_e A_e) (1 + \cos^2 \theta) + 2(A_e - P_e) A_f \cos \theta \right]$
 $A_e / A_\mu / A_\tau = 0.1516 \pm 0.0021 / 0.142 \pm 0.015 / 0.136 \pm 0.015$
 $\Rightarrow A_\ell = 0.15130 \pm 0.00207$ und $\sin^2 \theta_W = 0.23098 \pm 0.0026.$

Die polarisierten Elektronen liefern die genaueste Messung

Die leptonischen Kopplungen

Der schwache Mischungswinkel zeigt eine der wenigen 3 σ Diskrepanzen.

Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg

T08

Der W-Paar Produktionsquerschnitt - ein Beispiel

Die W-Paar Produktion ist in allen Kanälen untersucht worden.

SS 2003 Uni Augsburg

Die W-Paar Produktion - zwei Beispiele

$W^+W^- o \mu u_\mu \ q q^{\,\prime}$

 $W^+W^- o \mu
u_\mu \ e
u_e$

Die W-Produktion liefert klare Signaturen.

Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg

T08

Richard Nisius

Page 21

Der W-Paar Produktionsquerschnitt - das Resultat

 Das Resultat belegt klar die Existenz des ZWW Vertex. Die W-Paar Produktion ist je Energiepunkt mit ca. 2% Genauigkeit gemessen worden.

Das Standardmodell beschreibt den Wirkungsquerschnitt mit etwa 1% Genauigkeit.

Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg

T08

Der W-Paar Massenbestimmung - ein Beispiel

- Die besten Kanäle sind $q\bar{q}q\bar{q}$ und $q\bar{q}\ell\nu_{\ell}$.
- Der Nachteil von $q\bar{q}q\bar{q}$ sind Wechselwirkungen der Quarks verschiedener W-Bosonen, 'Color reconnection' und 'Bose-Einstein Correlation', die auftreten können, da die Zerfallslänge von 0.1 fm kleiner ist als die Reichweite der starken WW von ca. 1 fm.
- Der Nachteil von $q\bar{q}\ell\nu_{\ell}$ ist das unsichtbare Neutrino.
- Die Massen der W-Bosonen werden durch Anpassungen mit Nebenbedingungen $\sum E = 2E_{\rm b}, \sum \vec{p} = 0$ und $M_{W^+} = M_{W^-}$ bestimmt.
- Durch diese Constrained fits wird die Massenauflösung entscheidend verbessert.

 $egin{aligned} M(W o q ar{q} \ell
u_\ell) &= (80.516 \pm 0.073) \ {
m GeV} \ M(W o q ar{q} q ar{q}) &= (80.407 \pm 0.120) \ {
m GeV} \end{aligned}$

Wegen der systematischen Unsicherheiten von $q\bar{q}q\bar{q}$ liefert $q\bar{q}\ell\nu_{\ell}$ das genauere Resultat.

T08

Die Masse und Breite des W-Bosons

- Die indirekte Massenbestimmung liefert $M(W) = (80.380 \pm 0.023)$ GeV

Die indirekte Bestimmung der W-Masse ist immer noch genauer als die direkte.

Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg

T08

Standardmodell-Fits und die Higgs-Masse

Das Standardmodell hat Promille Tests schadlos überstanden.

SS 2003 Uni Augsburg

- Die Entdeckung der Paritätsverletzung war ein Meilenstein zum Verständnis der schwachen Wechselwirkung.
- Das elektroschwache Standardmodell vereinigt elektromagnetische und schwache Wechselwirkung.
- Im GSW Modell koppeln die W[±]-Bosonen an linkshändige Fermionen und rechtshändige Antifermionen. Wegen der Mischung über den Weinbergwinkel koppelt der neutrale elektroschwache Strom auch an rechtshändige Fermionen.
- Die Messungen zum Z-Boson haben die Vorhersagen des GSW Modell auf sub-Promille Genauigkeit bestätigt.
- Die W-Paar Erzeugung wurde bei LEP mit Prozent-Genauigkeit untersucht. Die indirekte Messung der W-Masse ist jedoch immer noch genauer als diese direkten Messungen.
- Das Standardmodell zeigt eine gute Konsistenz zwischen direkten und indirekten Bestimmungen der Top- und W-Massen.
- Die direkte Suche nach dem Higgs-Boson geht in eine neue Runde.
 Das ist das Thema der nächsten Vorlesung.