

- 1. Einführung
- 2. Beschleuniger
- 3. Detektoren
- 4. Bewegungsgleichungen und Symmetrien
- 5. Das Quark-Modell und die CKM-Matrix
- 6. CP-Verletzung im Standardmodell
- 7. Proton- und Photonstrukturfunktionen
- 8. Elektroschwache Präzisionsmessungen
- 9. Das Higgs-Boson
- **10.** Neutrino-Massen und Neutrino-Oszillationen



## Was wir heraus gefunden haben





- Es gibt drei Familien von Leptonen und Quarks.
- Sie sind Fermionen (Spin = 1/2), und nur die erste Familie bildet stabile Materie.
- Zu jedem dieser Teilchen gibt es ein Antiteilchen mit umgekehrten Ladungen aber sonst identischen Eigenschaften.
- Die Massen sind sehr verschieden und niemand weiß warum. Die Massen reichen von etwa 0 für Neutrinos bis 175 GeV (Atom mit A = 183) für das top Quark.
- Die Wechselwirkungen der Fermionen werden durch den Austausch von Bosonen (Spin = 1,2) beschrieben.





Das mathematische Konzept

- Eichgruppe:  $U(1)_{\rm Y} \times SU(2)_{\rm L} \times SU(3)_{\rm C}$  mit lokaler Eichinvarianz.
- Eichbosonen:  $\gamma$ , Z, W<sup> $\pm$ </sup> (elektroschwach) und Gluonen (stark).
- Ladungen: elektrische Ladung, schwacher Isospin und Farbe.
- Die Bosonen, die Ladungen tragen, haben Selbstwechselwirkungen: Z, W $^{\pm}$  (elektroschwach) und Gluonen (stark).



### **Eichtransformationen freier Felder**



Ladungserhaltung

Wechselwirkung mit Photonfeld

Die Forderung nach lokaler Eichinvarianz erzwingt ein masseloses Eichboson.

**Einblicke in die Teilchenphysik** 

SS 2003 Uni Augsburg





# Gute Übereinstimmung von direkten und indirekten Messungen.

#### ...aber es gibt einige fundamentale Probleme

- Die lokale Eichinvarianz funktioniert nur für masselose Eichbosonen, also nur für Photonen und Gluonen, aber nicht für W und Z-Bosonen!
- Der Wirkungsquerschnitt longitudinaler
    $W^{\pm}$ -Bosonen divergiert f
  ür hohe Energien.



 Wir verstehen nicht, was die Massen der Elementarteilchen erzeugt, und warum sie so verschieden schwer sind.

Wir brauchen eine Lösung für diese Schwächen des Standardmodells.



#### Die Vermutung (1965)

#### Fundamentale Teilchen, sowohl Fermionen als auch Bosonen, sind an sich masselos.

- Massen werden erst durch Wechselwirkungen mit einem Hintergrundfeld, dem Higgsfeld, erzeugt.
- Je stärker die Kopplung, um so größer die Masse.
- Die Eichbosonen erhalten ihre longitudinalen Anteile durch spontane Symmetriebrechung.

#### Der Vater des Gedankens



**Peter Higgs** 

#### Die Konsequenz

- Die Existenz des skalaren Higgs-Bosons als Anregung des Higgsfeldes.

Die Vorhersagen des Standardmodells

- Die Kopplungen des Higgs-Bosons an alle Teilchen sind vorhergesagt.
- Die Zerfalls-Kanäle und Raten des Higgs-Bosons bei gegebener Masse liegen fest.

Die Masse des Higgs-Bosons ist nicht vorhergesagt und muß gemessen werden.





- Ein rotationssymmetrisches System.
  - Ob nun so oder so, der neue Grundzustand hat nicht mehr die Symmetrie des Systems
     ⇔ spontane Symmetriebrechung.
- Goldstone Theorem:

Immer wenn eine kontinuierliche Symmetrie eines Systems im Grundzustand nicht realisiert ist, treten masselose skalare Teilchen, die Goldstone-Bosonen, auf.

#### Higgs-Mechanismus:

Diese masselosen Goldstone-Bosonen können durch eine Eichtransformation in die longitudinalen Freiheitsgrade der Eichbosonen umgewandelt werden. Man sagt dazu auch: 'Das Goldstone Boson wird vom Eichboson gefressen.'

# **Symmetriebrechung und Higgs Potential**



Die Störungstheorie ist eine Entwicklung um das Minimum des Potentials.

Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg

**T09** 

**Richard Nisius** 



#### **Das Higgs-Feld**

Skalares komplexes Dublett

$$egin{array}{c} \Phi_1 \ \Phi_2 \end{array} 
ight)$$
.

 Drei der vier Freiheitsgrade ergeben die Iongitudinalen Freiheitsgrade der W<sup>±</sup> und Z-Bosonen, der vierte Freiheitsgrad liefert das skalare Higgs-Boson.

### Die Kopplungen des Higgs-Bosons

- Die Yukawa Kopplung an Fermionen:

$$\left| \begin{array}{c} \mathrm{f} & & \\ \mathrm{f} & & \\ \mathrm{f} & & \end{array} \right| c_{\mathrm{Hff}} = i rac{m_f}{v}, \ (v^2 = rac{1}{G_F \sqrt{2}})$$

#### — Die Kopplung an W/Z - Bosonen:



Die Zerfallsbreiten



 $egin{aligned} 74\%(H o bar{b})\ 7\%(H o au^+ au^-,W^+W^-,gg)\ 4\%(H o car{c}) \end{aligned}$ 



Die minimale Erweiterung des Standardmodells

- Es gibt zwei skalare komplexe Dubletts.
- Drei der acht Freiheitsgrade ergeben die longitudinalen Freiheitsgrade der W<sup>±</sup> und Z-Bosonen. Die restlichen fünf Freiheitsgrade liefern fünf Higgs-Bosonen.
   Davon sind zwei CP-even (h,H), eines CP-odd (A) und zwei geladen (H<sup>±</sup>).
- Die zwei Parameter der Theorie sind  $an eta = v_1/v_2$  und  $M_A$ .
- Das MSSM macht mehr Vorhersagen, z.B.  $M_{H^{\pm}}^2 = M_A^2 + M_W^2$  (LO) und  $M_h < 130$  GeV (HO).
- Die Phänomenologie von SM und MSSM ist sehr ähnlich.
- Die experimentellen Grenzen von LEP mit 95% CL sind:

 $M_h > 91 \text{ GeV}, M_A > 91.9 \text{ GeV}$  und  $\tan \beta \notin (-0.5, 2.4)$  aus  $e^+e^- \rightarrow Z/Ah$ .  $M_{H^{\pm}} > 78.6 \text{ GeV}$  aus  $e^+e^- \rightarrow H^+H^-$  mit  $H^{\pm} \rightarrow \tau^{\pm}\nu_{\tau}, cs$ .

In dieser Vorlesung wird das MSSM nicht weiter behandelt.



# Wo müssen wir nach dem Higgs-Boson suchen?

#### Das Resultat langer Evolutionen...

- Rechnung für M<sub>top</sub> = 175 GeV,  $\alpha_s(m_Z^2) = 0.118$ .
- $-\Lambda$  ist die Skala ,bis zu der das SM gültig bleibt.
- Forderung der Perturbativität  $\Rightarrow$  Obere Grenze.
- Stabilität des Vakuums  $\Rightarrow$  Untere Grenze.



**Einblicke in die Teilchenphysik** 

SS 2003 Uni Augsburg

**T09** 

800

600

400

M<sub>H</sub>°[GeV]

 $m_t = 175 \text{ GeV}$ 



## **Der Large Electron Positron Beschleuniger (LEP)**



Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg

T09 Richard Nisius

ius Pa



# Higgs-Suche bei LEP - generelle Überlegungen

### Produktion

Higgs-Strahlung



– Boson-Fusion





Higgs-Strahlung ist der bei weitem dominierende Prozess bei LEP.

#### Die Schlüssel zum Erfolg

- Der Wirkungsquerschnitt bei LEP für  $M_H = 115$  GeV und  $\sqrt{s} = 208$  GeV ist ca. 0.1 pb. Das gibt nur etwa 50 Ereignisse pro Experiment.
- Die dominanten Zerfallskanäle des Higgs für  $M_H = 115$  GeV sind  $H \rightarrow b\bar{b}$  und  $H \rightarrow \tau^+ \tau^-$ . Nachweis von b quarks ist sehr wichtig.
- Alle Zerfälle des Z-Bosons, auch  $Z \rightarrow \nu \nu$ , müssen analysiert werden. Hermetizität ist wichtig.
- Das Verhältnis Signal zu Untergrund bestimmt die Sensitivität. Genaue Kenntnis eines möglichst kleinen Untergrunds ist wichtig.

Wegen der geringen Statistik müssen die Resultate aller Kanäle und aller Experimente kombiniert werden.













#### Die signifikantesten Kandidaten

|   | 4-jets | $E_{ m miss}$ | lepton       | tau       |    |
|---|--------|---------------|--------------|-----------|----|
|   | H,Z    | H,Z           | H,Z          | H,Z       |    |
|   | bb, qq | bb,  u u      | bb, ee       | bb,	au	au |    |
|   |        |               | $bb, \mu\mu$ | au	au,qq  |    |
| Α | 6      | -             | 1            | 1         | 8  |
| D | 3      | -             | -            | -         | 3  |
| L | 2      | 2             | -            | -         | 4  |
| 0 | 1      | 1             | -            | -         | 2  |
|   | 12     | 3             | 1            | 1         | 17 |

- Die Erwartung: 8.4 (Signal) + 15.9 (Background).
- Zusätzliche zu den Kandidaten fliessen die Effizienz (30-60%) und der Background in die Analyse mit ein.
- Die meisten Kandidaten sind 4-jets.
- Die meisten Kandidaten hat ALEPH.

Erst eine komplizierte Kombination aller Kanäle und Experimente liefert das LEP Resultat.

Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg

**T09** 

**Richard Nisius** 



### Higgs-Suche bei LEP - das Resultat



#### Der lange Weg...

- Die Frage: Sind die Daten besser verträglich mit Background (b) oder mit Signal =  $f(M_H)$  plus Background (s+b).
- Das Mittel: Likelihood ratio  $Q = \mathcal{L}_{s+b}/\mathcal{L}_b$ - Die Formel:

$$-2\ln Q = 2s_{
m tot} - 2\sum_i n_i \ln\left[1 + s_i/b_i
ight]$$

...zum vorläufigen amtlichen Endergebnis

- LEP Luminosität  $\mathcal{L}_{int} = 2.5 \text{ fb}^{-1}$ .
- $-~{\rm M_H}>114.1~{\rm GeV}$  mit 95% CL.
- Im Bereich 115 GeV  $< M_H < 118$  GeV ist CL(s+b) = 37% und CL(b) = 8%.

**Richard Nisius** 

Erst die Zukunft wird die Frage nach dem Higgs beantworten.





|                                            | Run I       | Run II      |
|--------------------------------------------|-------------|-------------|
|                                            | 1992 - 1996 | 2001 - 20xx |
| Umfang [km]                                | 6.4         | 6.4         |
| $E_{\mathrm{p}, ar{\mathbf{p}}}$ [TeV]     | 0.9         | 0.98        |
| Teilchenpakete                             | 6x6         | 140x103     |
| N $_{ m p}$ /Paket [ $10^{11}$ ]           | 2.3         | 2.7         |
| $N_{ar{p}}$ /Paket [ $10^{11}$ ]           | 0.55        | 1.0         |
| $\mathcal{L}_{\mathrm{int}}$ [fb $^{-1}$ ] | 0.11        | 10-30       |

Ein paar Details

Das Tevatron ist zur Zeit der Beschleuniger mit der höchsten Schwerpunktsenergie.

Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg

**T09** 

**Richard Nisius** 



## **Higgs-Suche am Tevatron - die Vergangenheit**

Die Produktionskanäle



⊕ Größte Rate ca. 1pb.
 ⊖ Immenser Untergrund.



⊖ Faktor 2-5 kleinere Rate.
⊕ Lepton-Tag hilft den Untergrund zu bekämpfen.



Die Sensitivität von RUN I reichte nicht aus, um das Standardmodell zu testen.

SS 2003 Uni Augsburg

**Richard Nisius** 



### **Higgs-Suche am Tevatron - die Zukunft**



#### Die Umfrage: Was kann im RUN II erreicht werden?

Realist: Eine Verbesserung gegenüber LEP ist ab ca. 2 fb<sup>-1</sup> Luminosität möglich. Pessimist: Mit 10 fb<sup>-1</sup> werden Massen bis  $M_H = 180 \text{ GeV}$  mit 95% CL ausgeschlossen. Optimist: Für  $M_H = 116 \text{ GeV}$  und 15 fb<sup>-1</sup> ist eine 5 Sigma Entdeckung möglich.

Alles ist möglich, wir werden warten müssen. Und um sicher zu gehen ...



## **Der Large Hadron Collider (LHC)**



Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg

**T09** 

**Richard Nisius** 





Einblicke in die Teilchenphysik



### Das TESLA Projekt - der Plan



Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg

**T09** 

**Richard Nisius** 



### Beispiele für Messungen am Linearbeschleuniger



Am Linearbeschleuniger werden sehr präzise Messungen möglich sein.

Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg

**Richard Nisius** 



- Das Higgs-Boson ist ein aussichtsreicher Kandidat zur Lösung fundamentaler Probleme des Standardmodells.
- Die bisherigen Suchen nach dem Higgs-Boson waren erfolglos und liefern eine untere Massengrenze von  $M_H > 114.1$  GeV.
- Theoretische Überlegungen und Einschränkungen durch Präzisionsmessungen des Standardmodells favorisieren ein leichtes Higgs-Boson,  $M_H < \mathcal{O}(200) \text{ GeV}.$
- Mit etwas Glück wird das Higgs-Boson am Tevatron gefunden werden.
- Das Entdeckungspotential des LHC ist so groß, dass mit hoher Wahrscheinlichkeit entweder das Higgs-Boson oder ein anderer Mechanismus zur Massenerzeugung gefunden wird.
- Sollte das Higgs-Boson existieren, wird ein zukünftiger Linearbeschleuniger seine Eigenschaften präzise vermessen.

Was immer passieren wird, es ist sehr wahrscheinlich, dass wir in 10-15 Jahren wissen, was für die Massenerzeugung verantwortlich ist.



Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg

**T09** 

**Richard Nisius**