

1. Einführung

2. Beschleuniger

- 3. Detektoren
- 4. Bewegungsgleichungen und Symmetrien
- 5. Das Quark-Modell und die CKM-Matrix
- 6. CP-Verletzung im Standardmodell
- 7. Proton- und Photonstruktur
- 8. Elektroschwache Präzisionsmessungen
- 9. Das Higgs-Boson
- 10. Neutrino-Massen und Neutrino-Oszillationen

Der Cockcroft - Walton - Beschleuniger

FIG. 2. Voltage multiplier with which Cockcroft and Walton achieved nuclear disintegration in 1932.

- Der erste Beschleuniger (1932).
- Die Kondensatoren werden parallel mit $U(t) = U_0 \sin(2\pi f t)$ geladen und in Reihe entladen.
- Die erreichbare Spannung $U_{
 m out}=2nU_0$ ist wegen Überschlägen limitiert auf ca. 1 MV.
- Abfall unter Last: $U_{\rm drop} = \frac{I}{fC} \left(\frac{2n^3}{3} + \frac{n^2}{2} \frac{n}{6} \right)$

Damit gelang Cockcroft und Walton der stimulierte Kernzerfall: ${}_{3}^{7}\text{Li} + {}_{1}^{1} p(500 \text{keV}) \rightarrow 2{}_{2}^{4}\text{He}.$

Ein moderner Cockcroft-Walton-Beschleuniger

ISIS Rutherford Lab Oxford $E_{H^-} = 665 {\rm keV}$

Dieses Prinzip wird heute noch in Vorbeschleunigern benutzt.

Das Prinzip stammt von Wideröe (1928).

- Der Energiegewinn pro Spannungsdurchlauf: $\Delta E = q U_0 \sin \Phi_s$
- Abstimmung der Driftlänge, damit die Teilchen in Phase eintreffen $\Rightarrow l_i = \frac{v_i}{2f}$.
- Für relativistische Teilchen gilt $v_i \approx c$ und $l_i \equiv l = \text{const.}$
- Für eine typische Frequenz von f = 10 MHz ergibt sich l = 15 m.
- Ungeeignet für hohe Energien, dort benutzt man Hohlraumresonatoren.

Diese Entdeckung bildet die Grundlage für alle Beschleuniger.

Das Zyklotron - der erste Kreisbeschleuniger

Das Prinzin

FIG. 13. Diagram of the vacuum chamber for the 1.2-MeV cyclotron built by Lawrence and Livingston at the University of California in 1931. See also Fig. 7.

- Nicht relativistisch: $\vec{F} = q(\vec{v} \times \vec{B}) = \frac{mv^2}{R}$ $\Rightarrow R = \frac{mv}{qB} = \frac{p}{qB}$ - Die Zyklotronfrequenz $f_z = \frac{1}{T} = \frac{v}{2\pi R} = \frac{qB}{2\pi m}$ ist unabhängig vom Impuls!

Das erste Zyklotron

− ca. 40 Umläufe ⇒
 Endenergie 13 keV

A Zyklotron at work

- Limitiert zu: $E_p < 20~{
m MeV}$ $E_lpha < 70~{
m MeV}$

Im relativistischen Fall wächst die Masse und die Frequenz muss verkleinert werden. Dies ist der große Nachteil des Zyklotron und führte zum Synchrotron (fester Radius, synchronisiertes B-Feld).

Colliding-Beam versus Fixed-Target Experiment

Beispiel Tevatron
$$E=1~{
m TeV},\,m=m_{
m p}pprox 1~{
m GeV}$$
 $\sqrt{s}=2~{
m TeV}$

Im Fixed-Target Modus benötigte man dafür $E \approx rac{s}{2m_{
m p}} = 2000 \, {
m TeV}$

Höchste Schwerpunktsenergien lassen sich nur mit Collidern erzielen.

Auszug aus der Geschichte der Teilchenbeschleuniger

Es erfolgte eine kontinuierliche Weiterentwicklung von Hadronund Elektronbeschleunigern über mehr als 70 Jahre.

Auszug aus der Welt der Beschleuniger

Teilchenphysik - Grundlegende Konzepte und aktuelle Experimente SS04 Uni Augsburg T02 Richard Nisius Page 8

Der Large Electron Positron Beschleuniger (LEP)

Einige Details zum LEP (1989 - 2000[†]) Beschleuniger

- Die Energie lässt sich durch resonante Depolarisation des Elektronstrahls sehr genau messen $f_{\text{depol}} = \left(\frac{g_e 2}{2m_e c^2}\right) \cdot E_{\text{b}}$. Dies liefert $\sigma_{E_{\text{b}}} = 0.2 \text{ MeV}$.
- Diese Methode funktioniert aber nur ohne Strahlkollisionen. Die Bestimmung der Energie während Strahlkollisionen erfordert eine Extrapolation unter genauer Kenntnis des B-Felds.
- Die Länge der Umlaufbahn ist durch die Frequenz der Beschleunigerelemente festgelegt.
 Die Energie bestimmt sich durch das integrale Magnetfeld senkrecht zur Teilchenbahn pro Umlauf.

- Das Magnetfeld wird mit NMR Proben gemessen und der Ort des Teilchendurchgang durch elektrostatische Strahlmonitore.
- Die Sensitivität der Strahlenergie auf äußere Effekte ist so groß, dass kleinste Effekte wahrgenommen werden können.

Beispiele sind:

Flux Loop

- Die Variation der Gravitation bei der Mondbewegung
- Verlustströme der französisch-schweizerischen Eisenbahnen.

Die genaue Kenntnis des B-Felds ist unabdingbar.

... von Sonne, Mond ...

Der Effekt

- Sonne und Mond erzeugen nicht nur Ebbe und Flut sondern deformieren die Erde derart, dass sich die Länge des LEP Rings ändert. Die Längenänderung des Ringes beträgt etwa $\Delta L/L \approx 10^{-8}$ also $\Delta L = 270 \mu m$.

Teilchenphysik - Grundlegende Konzepte und aktuelle Experimente SS04 Uni Augsburg T02 Richard Nisius Page 12

und von schnellen Zügen

... und der des Train à Grande Vitesse.

Time

Bei der Rückführung des Antriebsstroms der Züge über die Bahngleise gibt es Verluste die als parasitäre Ströme über den LEP-Ring laufen. Diese Ströme (ca. 1A bei 2000A Magnetstrom) stören die Magnetisierung der Dipolmagnete und ändern deren Magnetfeld.

Der LEP Beschleuniger ist ein etwas unhandlicher Zugfahrplan für Reisende aus Genf.

Ist ein Beschleuniger wirklich ein 'Beschleuniger'?

Ein Beschleuniger testet die Relativitätstheorie und ist eher ein Energiezuführer als ein Beschleuniger!

Teilchenphysik - Grundlegende Konzepte und aktuelle Experimente SS04 Uni Augsburg T02 Richard Nisius Page 14

Die Synchrotronschwingungen

Sebststabilisation des Strahls

- Teilchen mit zu niedrigem Impuls, $\Delta p/p < 0$, laufen auf kürzeren Bahnen und kommen zu früh.
- Wer zu früh kommt wird belohnt sieht eine höhere Spannung und wird wieder an die Sollbahn herangeführt.
- Das Umgekehrte gilt für Teilchen mit zu großem Impuls, $\Delta p/p > 0$.

Die Teilchen führen Schwingungen um die Sollbahn durch - die Synchrotronschwingungen.

Alternating-gradient Fokussierung

$$\begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix} = e \begin{pmatrix} 0 \\ 0 \\ c \end{pmatrix} \times \begin{pmatrix} gy \\ gx \\ 0 \end{pmatrix} = \begin{pmatrix} -ecgx \\ +ecgy \\ 0 \end{pmatrix} = \begin{pmatrix} dp_x/dt \\ dp_y/dt \\ dp_z/dt \end{pmatrix}$$

mit: $x' \equiv \frac{dx}{dz} = \frac{v_x}{v_z} = \frac{p_x}{|p|}, dt = \frac{dz}{c}$ folgt: $\frac{dp_x}{dt} = \frac{dx'|p|}{dz/c} = -ecgx$
also: $x'' = \frac{dx'}{dz} = -\frac{eg}{|p|}x = -kx = \begin{cases} k > 0 \quad (F)$ okussiernd
 $k < 0 \quad (D)$ efokussiernd
 $k < 0 \quad (D)$ efokussiernd
 $M_F = \begin{pmatrix} \cos \Omega & 1/\sqrt{|k|} \sin \Omega \\ -\sqrt{|k|} \sin \Omega & \cos \Omega \end{pmatrix}$ mit $\Omega = \sqrt{|k|}L$
 $M_Drift = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix}, M_D = \begin{pmatrix} \cosh \Omega & 1/\sqrt{|k|} \sinh \Omega \\ \sqrt{|k|} \sinh \Omega & \cosh \Omega \end{pmatrix}$

Bei geigneter Wahl der Parameter wirkt ein System alternierender Quadrupole $M = M_{\rm F} M_{\rm Drift} M_{\rm D}$ fokussierend.

Die Luminosität

- Die Luminosität ist die Beschleuniger-Eigenschaft, die die mögliche Ereignisrate bestimmt.
- Spezifische Luminosität: $\mathcal{L} = \frac{f N_1 N_2}{4\pi \sigma_x \sigma_y}$ mit $I_i = q n_b n_i f_b \Rightarrow \left| \mathcal{L} = \frac{I_1 I_2}{4\pi q^2 f_b n_b \sigma_x \sigma_y} \right|$
- Aus der integrierten Luminosität, $L = \int \mathcal{L} dt$, folgt die Ereignisrate $N = \sigma \cdot L$, wobei der Wirkungsgerschnitt σ in barn, $1b = 10^{-28} m^2$, angegeben wird, ($1pb = 10^{-12} b$).

Hohe Luminosität erfordert viele Teilchen und kleine Strahlquerschnitte.

- Jedes beschleunigte geladene Teilchen der Masse m_0 strahlt Photonen ab.
- Liénard-Wichert: $P_{\gamma} = rac{2}{3} r_{
 m e} m_o c \gamma^6 \left\{ \left(rac{{
 m d}ec{m eta}}{{
 m d}t}
 ight)^2 \left[ec{m eta} imes rac{{
 m d}ec{m eta}}{{
 m d}t}
 ight]^2
 ight\}$
- $-\text{ Die Aufteilung in }\beta_{||} \text{ und }\beta_{\perp} \text{ bzw. } p_{||} \text{ und } p_{\perp} \text{ liefert } P_{\gamma} = \frac{2r_{\rm e}}{3m_oc} \left\{ \left(\frac{\mathrm{d}p_{||}}{\mathrm{d}t}\right)^2 + \left(\frac{\gamma \mathrm{d}p_{\perp}}{\mathrm{d}t}\right)^2 \right\}$
- Die Strahlung auf Grund der Impulsänderung in Bewegungsrichtung ist unterdrückt.
 Der Hauptanteil kommt von der Querbeschleunigung.
- Die Strahlungsleistung für $rac{\mathrm{d} p_{||}}{\mathrm{d} t} \ll rac{\gamma \mathrm{d} p_{\perp}}{\mathrm{d} t}$ ist: $P_{\gamma} = rac{2}{3} r_{\mathrm{e}} m_{\mathrm{e}} c^3 rac{\left(eta \gamma
 ight)^4}{r^2}$
- Die Strahlung ist proportional zu $\beta \gamma = \frac{p}{m_0}$, d.h. $\left[\frac{P_{\gamma,p}}{P_{\gamma,e}} = \frac{m_e^4}{m_p^4} \approx 10^{-13} \right]$ bei gleicher Energie.

Beispiele:

Maschine	E [GeV]	r [m]	$\Delta E_{ m turn}$ [GeV/Teilchen]	$P_{\gamma},$ [MW/Strahl]	N_γ [1/s]
LEP e^+e^-	100	3096	-2.86	8.57	$2\cdot 10^{14}$
LHC pp	8000	2669	-0.0119	0.0103	$1\cdot 10^{13}$

Riesige Verlustleistung bei LEP \Rightarrow höhere Energien erfordern einen Linearbeschleuniger.

- Umfang: 6336 m, Teilchenenergien: $E_p(E_e) = 920(30) \text{ GeV} \Rightarrow \sqrt{s} = 332 \text{ GeV}$, Luminosität: $\mathcal{L} = 1.4 \cdot 10^{31} / cm^2 s$, Magnetfeld: $B_e(B_p) = 0.274(4.65)$ Tesla.

Der einzige ep-Beschleuniger und der erste Beschleuniger mit supraleitenden Magneten.

	Run I	Run II
	1992 - 1996	2001 - 20xx
Umfang [km]	6.4	6.4
$E_{\mathrm{p}, ar{\mathrm{p}}}$ [TeV]	0.9	0.98
Teilchenpakete	6x6	140x103
N $_{ m p}$ /Paket [10^{11}]	2.3	2.7
N $_{ar{\mathrm{p}}}$ /Paket [10^{11}]	0.55	1.0
$\mathcal{L}_{\mathrm{int}}$ [fb $^{-1}$]	0.11	10-30

Ein paar Details

Das Tevatron ist zur Zeit der Beschleuniger mit der höchsten Schwerpunktsenergie.

- Umfang: 3.9 km
- Energie: E = 100 GeV/Nukleon

In 2003 - Deuteron auf Gold

- Reaktion: ${}^{2}_{1}\mathrm{H}^{+} + {}^{197}_{79}\mathrm{Au}^{+79} \rightarrow X$
- 110 bunches mit $N_{
 m x}/{
 m bunch}$ von $N_{
 m H}=6\cdot 10^{10}$ und $N_{
 m Au}=8\cdot 10^{8}$
- Luminosität: $\mathcal{L} = 6 \cdot 10^{27} / cm^2 s$

Ein idealer Platz zur Untersuchung der Schwerionenphysik, z.B. Quark-Gluon-Plasma.

Der LHC - ein Proton-Proton Beschleuniger (2007⁺⁺)

Schwere Kerne, ...

Materie ↔ Antimaterie,

...

Higgs Produktion, ...

Technische Daten

L = 26.7 km $E_{\rm p}$ = 7 TeV $N_{\rm p}$ = 1.1 \cdot 10¹¹/ Strahl

Lumi Erwartungen

 10 fb^{-1} /a beim Start 100 fb^{-1} /a nominal

Das Herzstück des LHC die supraleitenden Magnete

Länge	15 m
Gewicht	23.8 t
B-Feld	8.3 T
Temperatur	1.9 K
Strom	12000 A
Energie	7.1 MJ

Bauarbeiten für ATLAS - die Schächte

Der Bauplan: Man nehme viel Platz,...

...grabe zwei tiefe Löcher...

Ein paar Daten

- Durchmesser: 12.6 und 18 m
- Tiefe: 60 m (Augsburger Dom)
- Baubeginn: 1998, während LEP läuft !
- Fertigstellung: 2002

...bringe schweres Gerät hinunter...

... und schachte eine Kaverne aus.

Ein paar Schwierigkeiten auf dem Weg

- Durch das fehlende Gestein der Schächte hebt sich der LEP-Ring lokal um etwa 4 cm.
- Damit der Beschleunigerring nicht bricht, muß er nachjustiert werden.
- Kaverne: $LxBxH = 53x30x35 \text{ m}^3$ (LxB = Doppelturnhalle, H = Augsburger Rathaus).

Bauarbeiten für ATLAS - die Installation im Zeitraffer

31.05.2003 30.06.2003 31.07.2003 31.08.2003 30.09.2003 31.10.2003 28.11.2003 31.12.2003 31.01.2004 28.02.2004 31.03.2004 30.04.2004 06.05.2003

Schauen Sie doch bitte bis zum Frühjahr 2007 noch ein paar Mal vorbei.

Das TESLA Projekt - der Plan

Teilchenphysik - Grundlegende Konzepte und aktuelle Experimente SS04 Uni Augsburg T02 Richard Nisius Page 26

Das TESLA Projekt - die Entwicklungsarbeiten

Es ist ein langer Weg von der Prinzipskizze

und die Tesla Test Facility

zum engültigen Beschleuniger.

über die Kavität

Die Bauzeit, gerechnet ab dem Tag X, beträgt 8 Jahre.

- Beschleuniger werden seit 1932 zur Untersuchung elementarer Teilchen eingesetzt.
- Die ersten Experimente waren Fixed-Target Experimente an Beschleunigern, in denen die Beschleunigungsstrecke nur einmal durchlaufen wurde.
- Heute sind die meisten Beschleuniger Speicheringe, in denen Teilchen-Antiteilchen Paare, e^+e^- oder $p\bar{p}$, zur Kollision gebracht werden. Es gibt aber auch Elektron-Proton- und Nukleon-Nukleon Beschleuniger.
- Die heute erreichten Schwerpunktsenergien sind 209 GeV und 2000 GeV
 f
 ür e⁺e⁻ und $p\bar{p}$ Beschleuniger.
- Die wesentlichen Limitierungen der Speicherringe sind die Synchrotronstrahlung f
 ür Elektron-Maschinen und das erreichbare Magnetfeld f
 ür Proton-Maschinen.