

- 1. Einführung
- 2. Beschleuniger
- 3. Detektoren
- 4. Bewegungsgleichungen und Symmetrien
- 5. Das Quark-Modell und die CKM-Matrix
- 6. CP-Verletzung im Standardmodell
- 7. Proton- und Photonstruktur
- 8. Elektroschwache Präzisionsmessungen
- 9. Das Higgs-Boson
- **10. Neutrino-Massen und Neutrino-Oszillationen**

Zur Erinnerung - die drei Flavour-Eigenzustände

- Cowan et al. (1956): $\bar{\nu}_e \ p \to \mathrm{e}^+ \ n$ - Danby et al. (1962): $\nu_{\mu} n \rightarrow \mu^{-} p + X$ - DONUT (2000): - LEP (1990):

 $u_{ au}
ightarrow au^- + X$

Es gibt nur drei leichte Eigenzustände zur schwachen Wechselwirkung.

- Die Flavour-Eigenzustände sind Superpositionen der Massen-Eigenzustände:

$$| \nu_{\alpha} \rangle \equiv \sum_{i} U_{\alpha i} | \nu_{i} \rangle$$
 mit $\alpha = e, \mu, \tau$ und $i = 1, \dots, N$.

- $\begin{array}{c} \text{ Drei Flavour } \\ \Rightarrow \text{ MNS-Matrix } \end{array} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \cdot \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}, \text{ mit } U = U_{23} U_{13} U_{12}$
- Die Ausbreitung in Raum und Zeit wird durch die Massen-Eigenzustände bestimmt. Wählt man $\vec{p} \uparrow \uparrow \vec{r}$ und benutzt $m_i \ll p_i \equiv p \approx E$ und v = c so folgt $E_i = \sqrt{p_i^2 + m_i^2} \approx p_i + \frac{m_i^2}{2E}$, und damit $|\nu_i(t)\rangle = e^{-i(E_i t - \vec{p}\vec{r})} |\nu_i(0)\rangle = e^{-i\frac{m_i^2 t}{2E}} |\nu_i(0)\rangle$.
- Die Wechselwirkung mit Materie ist durch die Flavour-Eigenzustände gegeben. Ein Beispiel ist die Neutrino-Elektron Streuung: $\nu_e e^- \rightarrow \nu_e e^-$.
- Die Wahrscheinlichkeit ein Neutrino, das zur Zeit t = 0 als α gestartet ist, im Zustand β zu finden ist: $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = |\langle \nu_{\beta}(t) | \nu_{\alpha}(0) \rangle|^{2} = |\sum_{i} U_{\beta i}^{\star} e^{+i \frac{m_{i}^{2} t}{2E}} U_{\alpha i}|^{2} \cdot |\langle \nu_{i} | \nu_{i} \rangle|^{2}$
- Dieser Effekt ist analog zu den bereits besprochenen Oszillationen der Pseudoskalaren Mesonen und wird als Neutrino-Oszillation bezeichnet.

Die Suche nach Neutrino-Massen ist ein sehr weites experimentelles Feld.

— Die Hauptquellen von Neutrinos sind:

- 1) Atmosphärische Neutrinos ($\nu_e, \bar{\nu}_e, \nu_\mu, \bar{\nu}_\mu$): Die Erdatmosphäre wird ständig von hochenergetischer kosmischer Strahlung getroffen. Diese Strahlung besteht vornehmlich aus Photonen und Protonen, aber auch aus schweren Kernen. Beim Auftreffen auf die Erdatmosphäre in $\mathcal{O}(10)$ km Höhe entwickeln sich hadronische Schauer. Die Neutrinos entstehen hauptsächlich durch den Pion-Zerfall, $\pi^{\pm} \rightarrow \mu^{\pm} {\stackrel{(-)}{\nu}}_{\mu}$ und $\mu^{\pm} \rightarrow e^{\pm} {\stackrel{(-)}{\nu}}_{\mu} {\stackrel{(-)}{\nu}}_{e}$.
- 2) Sonnen-Neutrinos (ν_e): Bei der Wasserstofffusion in der Sonne entstehen Neutrinos in der Reaktion $4p \rightarrow {}_2^4\text{He} + 2e^+ + 2\nu_e$.
- 3) Supernova-Neutrinos (ν_e , $\bar{\nu}_e$, ν_μ , $\bar{\nu}_\mu$, ν_τ , $\bar{\nu}_\tau$): Bei einer Supernova-Explosionen wie der Explosion der SN1987A gibt es einen sehr kurzern Ausbruch von Neutrinos aller Sorten.
- 7) Natürliche Radioaktivität (ν_e , $\bar{\nu}_e$): In den Beta-Zerfällen der Kerne wie 3_1 H, $^{187}_{75}$ Re oder $^{222}_{88}$ Ra entstehen ν_e und $\bar{\nu}_e$.
- 4) Beschleuniger-Neutrinos ($\nu_{\mu}, \bar{\nu}_{\mu}$): Durch Beschuss von Be- oder Al-Targets mit Protonen werden Pionen und Kaonen erzeugt. Aus deren Zerfällen erhält man ν_{μ} und $\bar{\nu}_{\mu}$ mit einer geringen Beimischung von ν_{e} und $\bar{\nu}_{e}$ aus $K^{\pm} \rightarrow \pi^{0} e^{\pm {(-) \choose \nu_{e}}}$ Zerfällen.
- 5) Reaktor-Neutrinos ($\bar{\nu}_e$): In den Beta-Zerfällen schwerer Kerne im Kernreaktor entstehen Elektron-Antineutrinos, $\bar{\nu}_e$.

Die verschiedenen Quellen und Experimente testen verschiedene Phasenraumbereiche.

- Es gibt drei Arten von Experimenten um absolute Neutrino-Massen zu messen.
 - 1) Die Messung des Endpunktes des Spektrums der Elektronenergie im Tritium Beta-Zerfall, ${}_{1}^{3}H \rightarrow {}_{2}^{3}He \ e^{-} \ \bar{\nu}_{e}$. Die obere Massengrenze ist $m_{\nu_{e}} < 2.2$ eV.
 - 2) Die Messung des Muon-Impulses im Zwei-Körper Zerfall des Pions in Ruhe:

 $\pi^+
ightarrow \mu^+
u_\mu$. Die Neutrino-Masse ist: $m_{
u_\mu}^2 = m_\pi^2 + m_\mu^2 - 2m_\pi \sqrt{m_\mu^2 + p_\mu^2}$. Mit $m_\mu = 105.658389 \pm 0.000034 \text{ MeV}$, $m_\pi = 139.56995 \pm 0.00037 \text{ MeV}$ und einer Messung von $p_\mu = 29.79200 \pm 0.00011 \text{ MeV}$ ergibt sich $m_{
u_\mu}^2 = -0.016 \pm 0.023 \text{ MeV}^2$ und damit eine obere Grenze von $m_{
u_\mu} < 170 \text{ keV}$. 3) Die Messung der Energie-Impuls Erhaltung im τ -Zerfall mit n-Pionen, $\tau^- \rightarrow n\pi\nu_\tau$. Aus der Energie das hadronischen Systems $E_h^{\star} = \frac{m_{\tau}^2 + m_h^2 - m_{
u_\tau}^2}{2m}$ ergibt

sich eine Massengrenze von $m_{
u_{ au}} < 18.2~{
m MeV}.$

 In keinem der Experimente wurde eine endliche Masse gemessen und deswegen werden obere Schranken f
ür die Neutrino-Massen angegeben.

Die beste Einschränkung auf die Neutrino-Massen ergibt sich aus dem Tritium Beta-Zerfall.

Das Mainz Experiment - das Prinzip

- Die Messung des Endpunktes des Spektrums der Elektronenergie im Zerfall ${}_{1}^{3}H \rightarrow {}_{2}^{3}He \ e^{-} \ \overline{\nu}_{e}$ liefert die Neutrino-Masse.
- Der Zerfall hat eine Reihe positiver Eigenschaften:
- 1) Ein niedriger Q-Wert $E_0 = 18.6 \text{ keV}$ liefert eine hohe Sensitivität am Endpunkt.
- 2) Die geringe Halbwertszeit $T_{\frac{1}{2}} = 12.3$ a erlaubt die Nutzung dünner Quellen bei genügender Zählrate.
- 3) Der Zerfall ist 'super-allowed', d.h. das Matrixelement ist unabängig von der Elektronenergie.
- 4) Die Elektronenhülle ist einfach und damit gibt es nur geringe Wechselwirkungen des e^- mit den Elektronen des Tochteratoms.

Die Messung des Endpunktes ist sehr kompliziert.

Limit von $m_{\nu_e} < 2.2$ eV mit 95% CL führt.

Das Experiment liefert die stärkste Einschränkung der absoluten Neutrino-Masse.

retarding energy [keV]

Das Experiment zur Bestimmung der Masse des u_{μ}

Die Pionen werden in einem Graphit-Target gestoppt. Der Pion-Zerfall $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ findet nahe der Oberfläche statt. Damit reicht das Muon-Impulsspektrum bis zur kinematischen Grenze von $p_{\mu}=29.79~{
m MeV}.$ Die Quadrupole filtern Positronen heraus. - Das Magnetspektrometer mit B = 0.276 T liefert p_{μ} mit einer Auflösung von $\Delta x = 50 \ \mu m \Rightarrow \frac{\Delta p_{\mu}}{p_{\mu}} = 7 \cdot 10^{-5}$. N276 mT DOWNSTREAM 1000 Abfall $\Rightarrow p_{\prime\prime}^{\max}$ 500 50 250 100 150 200 300 350 Ort - Aus der Messung: $m^2_{
u_{\mu}}=-0.016\pm0.023~{
m MeV}$ folgt $m_{
u_{\mu}} < 170 \text{ keV}$ mit 90% CL. Das dE/dx in Graphit ist die größte Unsicherheit.

- Im Zwei-Flavour Fall, z.B. ν_e , ν_μ reduziert sich die Maki-Nakagawa-Sakata Matrix auf:

$$\left(egin{array}{c} oldsymbol{
u}_e \\ oldsymbol{
u}_\mu \end{array}
ight) = \left(egin{array}{c} \cosartheta & \sinartheta \\ -\sinartheta & \cosartheta \end{array}
ight) \cdot \left(egin{array}{c} oldsymbol{
u}_1 \\ oldsymbol{
u}_2 \end{array}
ight)$$

- Die Wahrscheinlichkeit ein zur Zeit t = 0 z.B. als ν_e in der Sonne gestartetetes Neutrino zur Zeit *t*, also z.B. auf der Erde, auch als ν_e wiederzufinden, ergibt sich aus:

$$\langle \nu_{e}(t) | \nu_{e}(0) \rangle = \left[\cos \vartheta e^{+i \frac{m_{1}^{2}t}{2E}} \langle \nu_{1} | + \sin \vartheta e^{+i \frac{m_{2}^{2}t}{2E}} \langle \nu_{2} | \right] \left[\cos \vartheta | \nu_{1} \rangle + \sin \vartheta | \nu_{2} \rangle \right]$$

$$P(\nu_{e} \rightarrow \nu_{e}) = |\langle \nu_{e}(t) | \nu_{e}(0) \rangle|^{2} = \left| \cos^{2}\vartheta e^{+i \frac{m_{1}^{2}t}{2E}} + \sin^{2}\vartheta e^{+i \frac{m_{2}^{2}t}{2E}} \right|^{2}$$

$$= \cos^{4}\vartheta + \sin^{4}\vartheta + \cos^{2}\vartheta \sin^{2}\vartheta \left(e^{+i \frac{m_{1}^{2}-m_{2}^{2}t}{2E}} - e^{-i \frac{m_{1}^{2}-m_{2}^{2}t}{2E}} \right)$$

$$= 1 - 2\cos^{2}\vartheta \sin^{2}\vartheta + 2\cos^{2}\vartheta \sin^{2}\vartheta \cos(\frac{\Delta m^{2}t}{2E}) \quad \text{mit} \quad \Delta m^{2} = m_{2}^{2} - m_{1}^{2}$$

$$= 1 - \sin^{2}(2\vartheta) \sin^{2}(\frac{\Delta m^{2}t}{4E})$$

$$P(\nu_{e} \rightarrow \nu_{\mu}) = \sin^{2}(2\vartheta) \sin^{2}(\frac{\Delta m^{2}t}{4E})$$

- Mit $200 MeV fm \equiv 1$ folgt $1/eV = 2 \cdot 10^{-7}$ m. Damit beträgt die Oszillationslänge: $L = \pi \frac{4E}{\Delta m^2} \Rightarrow L = 2.5$

$$L=2.5\cdotrac{E/GeV}{\Delta m^2/eV^2}km$$

Das Verhältnis L/E bestimmt die Sensitivität auf verschiedene Massenbereiche.

Im Vakuum gelten die gekoppelten Bewegungsgleichungen

$$-\,i rac{\mathrm{d}}{\mathrm{d}t} \left(egin{array}{c}
u_e \
u_\mu \end{array}
ight) = rac{\Delta m^2}{4 E_
u} \left(egin{array}{c} \cos(2 artheta) & \sin(2 artheta) \ \sin(2 artheta) & -\cos(2 artheta) \end{array}
ight) \cdot \left(egin{array}{c}
u_e \
u_\mu \end{array}
ight) = \left(egin{array}{c} A & B \ B & -A \end{array}
ight) \cdot \left(egin{array}{c}
u_e \
u_\mu \end{array}
ight).$$

- In Materie gibt es $u e^-
ightarrow
u e^-$ Vorwärts-Streuung durch Z-Austausch für $u_e,
u_\mu,
u_ au$,

aber W-Austausch geht nur mit ν_e . Dies ändert die Bewegungsgleichungen zu:

- Aus $\Delta m_m^2 \sin(2\vartheta_m) = \Delta m^2 \sin(2\vartheta)$ ergibt sich damit in Materie:

$$\Delta m_m^2 = \Delta m^2 \sqrt{\left(\cos(2artheta) - rac{2E_
u}{\Delta m^2}V(x)
ight)^2 + \sin^2(2artheta)} \ \sin^2(2artheta_m) = rac{\sin^2(2artheta)}{\left[\cos(2artheta) - rac{2E_
u}{\Delta m^2}V(x)
ight]^2 + \sin^2(2artheta)}$$

- Trotz kleinem Mischungswinkel im Vakuum kann die Oszillationsamplitude in Materie

maximal werden, $\sin^2(2\vartheta_m) = 1$ für $\cos(2\vartheta) = \frac{2E_{\nu}}{\Delta m^2}V(x)$.

Der Mikheyev-Smirnov-Wolfenstein Effekt ergibt resonante Neutrino-Übergänge in Materie.

- Es kommen zu wenig Sonnen-Neutrinos auf der Erde an (CI-Experiment, Super-Kamiokande, SAGE, GALLEX/GNO, SNO, . . .). Erklärbar durch $\nu_e \rightarrow \nu_{\mu,\tau}$ Oszillationen mit $(\Delta m^2 \approx 10^{-5} \text{ eV}^2, \sin^2(2\vartheta) \approx 1).$
- Es kommen zu wenig atmosphärische $\nu_{\mu} + \bar{\nu}_{\mu}$ auf der Erde an (Super-Kamiokande,Macro, Soudan2). Erklärbar durch $\nu_{\mu} \rightarrow \nu_{\tau}$ -Oszillationen mit ($\Delta m^2 \approx 10^{-3} \text{ eV}^2$, $\sin^2(2\theta) \approx 1$).
- In einem Strahl von $\bar{\nu}_{\mu}$ wurden $\bar{\nu}_{e}$ Neutrinos gefunden (LSND). Erklärbar durch $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ Oszillationen mit ($\Delta m^{2} > 10^{-1} \text{ eV}^{2}$, $10^{-3} < \sin^{2}(2\theta) < 1$). Allerdings wurde dieser
 Effekt nur im LSND Experiment gesehen. Außerdem wurde ein großer Teil des erlaubten
 Bereichs von anderen Experimenten (Karmen, Nomad, Chorus) ausgeschlossen.
 Aus $\Delta m_{ij}^{2} = m_{i}^{2} m_{j}^{2}$ und $\Delta m_{12}^{2} + \Delta m_{23}^{2} = \Delta m_{13}^{2}$ folgt, dass nur zwei Δm_{ij}^{2} unabhängig sind. Deswegen erzwingt die Beschreibung des LSND Resultats zusätzlich
 eine sterile (nicht schwach-wechselwirkende) Neutrino-Sorte. Das MiniBooNE Experiment
 nimmt bereits Daten und wird diesen experimentellen Widerspruch auflösen. Wegen des
 Widerspruchs wird dieses Ergebnis hier nicht im Detail besprochen.

Neutrino-Oszillationen bei solaren and atmosphärischen Neutrinos sind klar gesehen.

Die Lösung im Drei-Flavour Szenario

Dieses Muster erklärt die Beobachtungen (außer LSND) durch Neutrino-Oszillationen.

Die Entstehung atmosphärischer Neutrinos

 Die wichtigste Reaktion der Neutrino-Production ist $p + \mathcal{N} \rightarrow \pi^{\pm}/K^{\pm} + X$. - Aus $\pi^{\pm} \to \mu^{\pm} \overset{(-)}{\nu}_{\mu}, \mu^{\pm} \to e^{\pm} \overset{(-)}{\nu}_{\mu} \overset{(-)}{\nu}_{e}$ und falls alle Muonen zerfallen ergibt sich $\frac{\nu_{\mu} + \bar{\nu}_{\mu}}{\nu_{e} + \bar{\nu}_{e}} = 2$ und $\frac{\bar{\nu}_{\mu}}{\nu_{\mu}} = 1$. - Da im Schauer mehr π^+ als π^- erzeugt werden erwartet man $\frac{\bar{\nu}_e}{\nu_a} < 1$. - Der Fluss der verschiedenen Neutrinosorten wird von mehreren Gruppen durch detaillierte Schauersimulationen für die Orte der Experimente vorhergesagt.

Der Entstehungsprozess ist sehr komplex.

Das Spektrum atmosphärischer Neutrinos

- Den absoluten Fluss kennt man nur auf etwa 20% genau.
- Das Fluss-Verhältniss ist besser bekannt.
 Die Unsicherheit ist hier nur etwa 5%.
- Der Fluss hängt von vielen Parametern ab, z.B. von der Weglänge die das Neutrino in der Atmosphäre zurücklegt, vom Magnetfeld der Erde am Ort des Experimentes und dem π/K Verhältnis.

Die kleinste theoretische Unsicherheit hat man bei der Messung des Verhältnisses.

Das Super-Kamiokande Experiment - SK

- Die Überdeckung von SK ist ca. 2800 mWe (Wasser equivalent).
- Die Masse ist 50 kt, mit 25 kt fiducial Volumen.
- Es gibt 11.1k (1.9k) PMTs im inneren (äußeren) Detektor.
- Man unterscheidet zwischen FC und PC Ereignissen.
- Die Nachweis-Reaktionen atmosphärischer Neutrinos sind:

 $egin{aligned} &
u_{e/\mu} \, n o e/\mu \, p, & ar{
u}_{e/\mu} \, p o e^+/\mu^+ \, n & (ext{Charged Current}) \ &
u_{e/\mu} \, n o
u_{e/\mu} \, X & (ext{Neutral Current}). \end{aligned}$

Debris von 7800 PMTs

- Das SK-Experiment im Teilaufbau, teilgeflutet und teilweise zerstört durch PMT Implosion.

Das Super-Kamiokande Experiment hat ein sehr bewegtes Leben.

Die Ereignisklassen in Super-Kamiokande

in oscillation analysis

Ein große Anzahl von Ereignissen variabler Energie zum Studium von ν -Oszillationen.

Aktuelle Ereignisverteilungen von Super-Kamiokande

Publizierte Analyse $\nu_{\mu} \leftrightarrow \nu_{\tau}$ versus $\nu_{\mu} \leftrightarrow \nu_{s}$ Oszillationen

Die Testgröße ist ^(νμ/νe)_{νe} für up- und down-going (^{νμ}/_{νe})_M für up- und down-going Neutrinos, also Neutrinos die durch die Erd-Materie oder nur durch die Erd-Atmosphäre geflogen sind.
 Drei Datensätze wurden auf νμ ↔ ντ und νμ ↔ νs

Oszillationen untersucht:

1) Fully contained (FC) neutral current (NC) Ereignisse mit $\langle E_{\nu} \rangle \approx 1 \ {
m GeV}.$

2) Partially contained (PC) charged current (CC)

 u_{μ} Ereignisse mit $\langle E_{
u} \rangle pprox 10-20~{
m GeV}.$

3) Upward going Muonen $\mu_{\rm up}$ mit $\langle E_{\nu} \rangle \approx 100 \, {\rm GeV}$.

Alle Daten sind besser mit $\nu_{\mu} \leftrightarrow \nu_{\tau}$ -Oszillationen verträglich. Den besten Fit erhält man für die Para-

meter ($\Delta m^2 \approx 3.2 \cdot 10^{-3} \ {
m eV}^2$, $\sin^2(2\theta) \approx 1$),

durchgezogene Linien in linken Histogrammen.

Klare Präferenz für $\nu_{\mu} \leftrightarrow \nu_{\tau}$ -Oszillationen.

Die aktuelle L/E Analyse von ν_{μ} -Ereignissen

Eine klare Diskrepanz zur Vorhersage ohne ν -Oszillationen für upward Neutrinos.

Eine Präferenz für maximale Mischung aus Oszillationen atmosphärischer Muon-Neutrinos.

K2K - der Test mit Beschleuniger-Neutrinos

- Im K2K Experiment werden Beschleuniger-Neutrinos von KEK zum Kamiokande Detektor gesandt. Alle 2.2 s wird ein 12 GeV p-Strahl von 1.1 μs Länge auf ein Al-Target gelenkt.
- Der Neutrinostrahl aus den π^+ Zerfällen ist zu 98% u_μ mit $\langle E_{
 u_\mu} \rangle = 1.3 \text{ GeV}.$
- In 300 m Entfernung ist ein zu Kamiokande baugleicher Detektor mit einer geringen Masse von 1 kt aufgestellt. Damit wird der von KEK ausgehende Neutrinosfluss bestimmt, und eine erwartete totale Zählrate im 250 km entfernten Super-Kamiokande Detektor von $79.1^{+6.2}_{-5.4}$ bzw (150.9) Ereignissen für K2K I(I+II) mit $4(8) \cdot 10^{18}$ p on target vorhergesagt.
- Im SK Detektor werden die Neutrinos durch die CC Reaktion $u_{\mu}n \rightarrow \mu^{-}p$ nachgewiesen.

Ein man-made Neutrinostrahl zur Überprüfung des Defizits atmosphärischer Muon-Neutrinos.

K2K - das Resultat

- Die Messung in einem Zeitfenster von 1.5 μs nach jedem Protonpuls ergibt insgesamt 56 (108) Ereignisse bei einer Vorhersage von $79.1^{+6.2}_{-5.4}$ (150.9) Ereignissen für K2K I(I+II).
- Die statistische Wahrscheinlichkeit der Konsistenz ist 1.3(0.011)%.
- Unter der Annahme, dass die ν_{μ} in ν_{τ} oszilliert sind, findet man als Lösung:
 - I: $\Delta m^2 = 2.8 \cdot 10^{-3} \text{ eV}^2$, $\sin^2(2\theta) = 1$

I+II: $\Delta m^2 = 2.73 \cdot 10^{-3} \ \mathrm{eV}^2$, $\sin^2(2\vartheta) = 1$

 Diese Parameter beschreiben sowohl die Rate, als auch die Energieverteilung der beobachteten Ereignisse.

Ein wunderbare Bestätigung des Defizits atmosphärischer Muon-Neutrinos.

Sonnen-Neutrinos - die Reaktionsketten

Die Reaktionsketten enthalten Neutrinospektren und monoenergetische Neutrinos.

- Die Neutrinos entstehen im Kern der Sonne $R < 0.3 R_{\odot}$ bei $T pprox 1.56 \cdot 10^7$ K.
- Sie fliegen durch ca. $7 \cdot 10^5$ km Sonnenmaterie, $1.5 \cdot 10^8$ km Vakuum und bis zu $1.3 \cdot 10^4$ km Erdmaterie.
- Die meisten Neutrinos stammen aus der pp-Kette (91%) allerdings bei niedriger Energie. Die ⁸B Neutrinos sind selten, (0.01%) haben aber hohe Energien.
- $\begin{array}{l} \text{ Der Nachweis geschieht durch } \nu_e \text{-Einfang} \\ \nu_e + A(Z) \rightarrow e^- + B(Z+1) \Leftrightarrow A(\nu_e,e)B, \\ \text{ oder durch } \nu_e e^- \rightarrow \nu_e e^- \text{ bzw. durch} \\ \nu_e \ d \rightarrow p \ p \ e^- \ \text{und } \nu_e \ d \rightarrow p \ n \ \nu_e \text{ Streuung.} \\ \text{ Die Vorgänge in der Sonne werden durch das} \end{array}$

Standard-Sonnenmodel (SSM) beschrieben. Pioniere sind Bahcall & Ullrich. Das SSM beschreibt die Zusammensetzung (H/He/Z > 2 = 34%/64%/2%), die Temperatur, – Das SSM sagt einen Flussdichte auf der Erde von $\Phi_{\nu_e} = 6.6 \cdot 10^{10} \nu_e/\text{cm}^2$ s voraus.

Das Studium der Sonnen-Neutrinos erlaubt einen Blick in das Innerste unserer Sonne.

Das Sonnen-Neutrinos Rätsel

- Die Nachweis der ν_{\odot} geschieht durch radiochemische und Echzeit Experimente:

$^{71}\mathrm{Ga}\left(u_{e},e^{-} ight) ^{71}\mathrm{Ge}$	$E_{ u} > 0.23~{ m MeV}$	(Gallex/GNO, Sage)
$^{37}\mathrm{Cl}\left(u_{e},e^{-} ight) ^{37}\mathrm{Ar}$	$E_{ u} > 0.82~{ m MeV}$	(Homestake)
$ u_ed ightarrow ppe^-(pn u_e), u_ee^- ightarrow u_ee^-$	$E_{ u} > ~2.2~{ m MeV}$	(SNO)
$ u_e e^- ightarrow u_e e^-$	$E_{ u} > ~5.5~{ m MeV}$	(Superkamiokande)

- Alle beobachten ein Defizit an Sonnen-Neutrinos im Vergleich zum SSM.

- 1SNU = ein ν_e -Einfang pro sec in 10^{36} Target-Atomen.
- Die Echzeit Experimente messen im Wesentlichen den ⁸B-Fluss, die radiochemischen Experimente sehen auch ⁷Be-Neutrinos und f
 ür ⁷¹Ga sogar *pp*- und *pep*-Neutrinos.

Es werden zu wenig ν_e gesehen.

Sonnen-Neutrinos in Super-Kamiokande

- Bei etwa 15 Ereignissen pro Tag ist die Neutrino-Richtung mit ν_e von der Sonne verträglich.
- Die j\u00e4hrliche Variation ist mit der Exzentrizit\u00e4t der Bahn der Erde um die Sonne vertr\u00e4glich.
- Es gibt keinen signifikanten Tag-Nacht Effekt, also kein MSW Effekt f
 ür Sonnen-Neutrinos in der Erde.

Das Sudbury Neutrino Observatory - SNO

- Die Überdeckung ist 6100 mWe.
- Das sensitive Material sind 1000 t schweres Wasser, D₂O. Das Wasser befindet sich in einer durchsichtigen Acryl-Kugel von $R_{AV} = 6$ m Radius und wird mit 9456 PMTs beobachtet.
- Die Kugel befindet sich in einer zweiten Kugel mit R = 8.9 m und einem Stahltank. Beide sind mit H₂O gefüllt.
- Der Nachweis der ⁸B Neutrinos geschieht über die folgenden Reaktionen:

CC:	$ u_e + d ~ ightarrow p + p + e^-$	\Rightarrow	$\phi_{CC} = \phi_e$	e^-
NC:	$ u_x+d ~ ightarrow p+n+ u_x$	\Rightarrow	$\phi_{NC} = \phi_e + \phi_{\mu, au}$	<i>n</i> -Einfang
ES:	$ u_x + e^- ightarrow u_x + e^-$	\Rightarrow	$\phi_{ES}~=\phi_e+0.15\phi_{\mu, au}$	e^-

Durch geignete Kombination der Messungen lassen sich die zwei Flüsse bestimmen.

SNO - die Datenanalyse

- Der Untergrund stammt von kosmischer Strahlung und natürlicher Radioaktivität (²¹⁴Bi, ²⁰⁸TI).
- Die drei Messgrößen sind der Zenitwinkel, $\cos \theta_{\odot}$, der Radius, R/R_{AV} , und die effektive kinetische Energie, $T_{\rm eff}$.
- Der Untergrund und die drei Reaktionen haben alle unterschiedliche Verteilungen in diesen Variablen und werden simultan, unter Benutzung der Effizienzen, angefittet.
- Das Resultat der Anpassung ist:

Alle:	N=2928	$[\phi]=10^6~{ m cm^{-2}~s^{-1}}$
CC:	N = 1968	$\phi_{CC} = 1.76 {}^{+ 0.06}_{- 0.05}({ m stat}) {}^{+ 0.09}_{- 0.09}({ m sys})$
NC:	N = 577	$\phi_{NC} = 5.09 {}^{+ 0.44}_{- 0.43}({ m stat}) {}^{+ 0.46}_{- 0.43}({ m sys})$
ES:	N = 264	$\phi_{ES} = 2.39 {}^{+ 0.24}_{- 0.23} ({ m stat}) {}^{+ 0.12}_{- 0.12} ({ m sys})$

– Aus diesen Messungen folgen dann ϕ_e und $\phi_{\mu, au}$.

Die erste Trennung von NC und CC-Prozessen der u_{\odot}

$$egin{aligned} \phi_{CC} &= \phi_e \ \phi_{NC} &= \phi_e + \phi_{\mu, au} \ \phi_{ES} &= \phi_e + 0.15 \, \phi_{\mu, au} \end{aligned}$$

- Das SNO Resultat für die ES Reaktion $u_x + e^- \rightarrow \nu_x + e^-$ ist konsistent mit dem SK Wert von $\phi_{ES}^{SK} = 2.32 \pm 0.09$ Das bedeuted das SNO funktioniert.
- Falls nur ν_e bei SNO eintreffen gilt $\phi_{NC} = \phi_{CC} = \phi_{ES}$. Der gemessene $\phi_{\mu,\tau}$ Fluss ist aber 5.3σ von Null verschieden. Das ist der Beweis der ν_e -Oszillationen. - Der totale Fluss der einfallenden Neutrinos ist $\phi_{NC} = 5.09 \stackrel{+}{_{-}0.43} (\text{stat}) \stackrel{+}{_{-}0.43} (\text{sys})$ Die SSM Vorhersage ist $\phi_{NC} = 5.05 \stackrel{+}{_{-}0.81}$ Diese Übereinstimmung ist ein Triumph des SSM.

Das Sonnen-Neutrino Rätsel ist gelöst

SNO - die Messung der Neutrino-Flüsse, die Salzphase

- Durch Zugabe von 2t NaCL wird die Effizienz für die Neutroneinfangreaktion erhöht. Der Einfang erfolgt nun an D₂ und Cl. Dadurch lässt sich ϕ_{NC} genauer messen.
- Der Untergrund nimmt zum Rand hin stark zu, und kommt von externen Neutronen, β und γ Strahlern, und von dem inneren Acryltank (AV).
- Die Spektren der drei Reaktionen sind sehr verschieden.
- Das Resultat der Anpassung ist:

Alle:	N=2939	$[\phi]=10^6~{ m cm^{-2}~s^{-1}}$
CC:	N = 1340	$\phi_{CC} = 1.70 {}^{+ 0.07}_{- 0.07}({ m stat}) {}^{+ 0.09}_{- 0.10}({ m sys})$
NC:	N = 1344	$\phi_{NC} = 4.90 {}^{+ 0.24}_{- 0.24}({ m stat}) {}^{+ 0.29}_{- 0.27}({ m sys})$
ES:	N=170	$\phi_{ES} = 2.13 {+ 0.29 \atop - 0.28} ({ m stat}) {+ 0.15 \atop - 0.08} ({ m sys})$

Eine konsistente und genauere Messung der NC Reaktion.

- Die Tag/Nacht Asymmetrie tested den MSW Effekt der ν_{\odot} beim Durchgang durch die Erde.

Die erlaubten Bereiche des SNO Experiments.

- Unter Einbeziehung der Resultate von Homestake

Gallex/GNO, Sage und der Tag/Nacht Asymmetrie

Die Large Mixing Angle Lösung zur Erklärung der ν_{\odot} -Oszillationen wird stark bevorzugt.

- Der Kamioka Liquid scintillator Anti-Neutrino Detektor untersucht $\bar{\nu}_e$ -Reaktor Neutrinos die zu 80% aus 26 japanischen Kernreaktoren stammen die sich in einem Abstand von L = 138 - 214 km mit $\langle L \rangle = 180$ km befinden.

- Das sensitive Material ist ein flüssiger Szintillator mit 1 kt Masse, der von 1879 PMTs beobachtet wird.
- Die Nachweis-Reaktion ist $\bar{\nu}_e + p \rightarrow e^+ + n$ mit einer Schwellenenergie von $E_{\nu} > 1.8$ MeV.
- Das Signal ist ein promptes e^+ in einer verzögerten Koinzidenz mit einem 2.2 MeV Photon aus dem Neutron-Einfang am Proton.
- Leistung und Abbrand der Reaktoren muss genau bekannt sein.
- Die Vorhersage ist $365.2 \pm 23.7 \ \bar{\nu}_e$ -Signal- und 7.5 ± 1.3 Untergrund-Ereignisse.

KamLAND erlaubt den Test der ν_{\odot} -Oszillationen.

KamLAND - die Ereignisverteilungen

Erste klare Messung des Verschwindens von $\bar{\nu}_e$ Reaktorneutrinos.

KamLAND - das Resultat

- (a) KamLAND (farbige Gebiete)
 - + Sonnenneutrinos (Linien)
- (b) Mit zusätlicher Forderung von CPT Invarianz

Das Verhältnis der 'L/E' Verteilungen der gesehen und erwarteten Ereignisse ohne ν -Oszillationen zeigt eine klare Oszillationssignatur, konsistent mit Neutrinooszillationen für einen £ktiven Reaktor in 180 km Entfernung.

- Der beste Fit: $\Delta m^2 = 8.2 + 0.6 - 0.5 \cdot 10^{-5} \text{ eV}^2$, $\tan^2 \vartheta = 0.40 + 0.09 - 0.07$

Reaktor $\bar{\nu}_e$ -disappearence und Sonnen-Neutrino-Defizit sind miteinander verträglich.

Zusammenfassung

- Im Standardmodell sind die Neutrinos masselos. Eine endliche Neutrino-Masse erzwingt Physik jenseits des Standardmodells.
- Es konnten bis heute keine absoluten Neutrino-Massen bestimmt werden. Die Grenzen aus direkten Messungen sind $m_{\nu_e} < 2.2 \text{ eV}$, $m_{\nu_{\mu}} < 170 \text{ keV}$ und $m_{\nu_{\tau}} < 18.2 \text{ MeV}$.
- Neutrino-Oszillationen können auftreten wenn mindestens ein Neutrino Masse hat und der Mischungswinkel endlich ist. Sie sind sensitiv auf quadratische Massendifferenzen, Δm_{ij}^2 .
- LSND beobachtet das Auftreten $\bar{\nu}_e$ in einem Strahl von $\bar{\nu}_{\mu}$. Dieses Resultat ist erklärbar durch $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_e$ -Oszillationen mit $\Delta m^2 > 10^{-1} \text{ eV}^2$ und $10^{-3} < \sin^2(2\vartheta) < 1$, konnte aber nicht durch andere Experimente bestätigt werden.
- In drei Experimenten wurde ein Defizit atmosphärischen ν_{μ} -Neutrinos, erklärbar durch $\nu_{\mu} \rightarrow \nu_{\tau}$ -Oszillationen, nachgewiesen. Der beste Fit an die Daten liefert $\Delta m^2 \approx 10^{-3} \text{ eV}^2$ und $\sin^2(2\theta) \approx 1$.
- Fünf Experimente mit unterschiedlicher Technik sehen ein signifikantes Defizit von ν_{\odot} . Das SSM ist in der Lage den Gesamtfluss $\phi_e + \phi_{\mu,\tau}$ zu beschreiben. Auch dieses Ergebnis ist erklärbar durch ν -Oszillationen. Dieses Resultat wurde durch das Verschwinden von $\bar{\nu}_e$ Reaktor- Neutrinos, also einer Messung mit einer anderen Neutrino-Quelle, verifiziert. Der beste Fit an alle Daten liefert $\Delta m^2 = 8.2 \cdot 10^{-5} \text{ eV}^2$ und $\sin^2(2\theta) = 0.90$.
- Die Aufgabe zukünftige Experimente ist die genaue Bestimmung der Massendifferenzen, Δm_{ij}^2 , und Mischungswinkel, $\sin^2(2\vartheta_{ij})$.