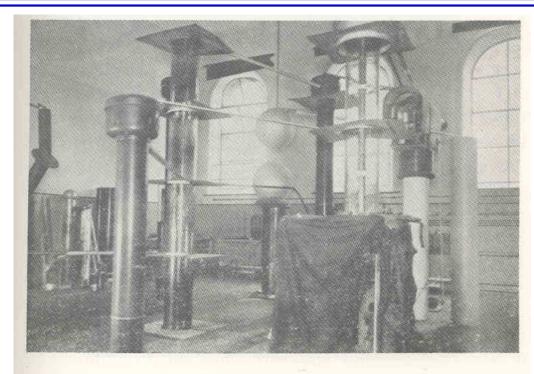
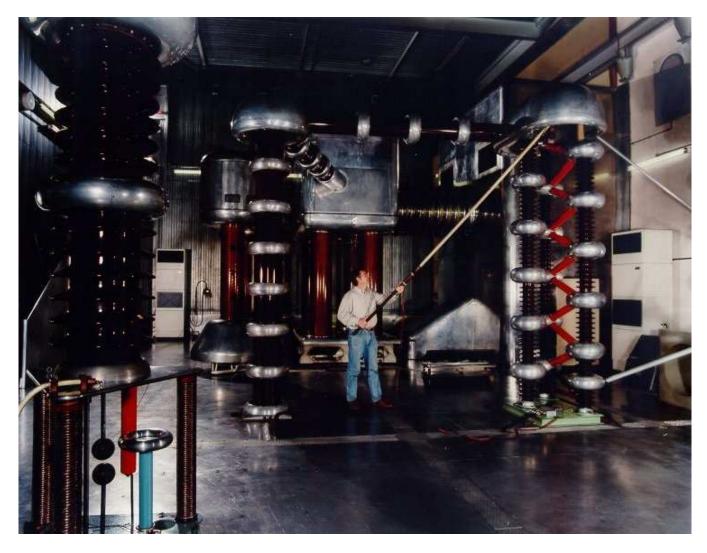


- 1. Einführung
- 2. Beschleuniger
- 3. Detektoren
- 4. Bewegungsgleichungen und Symmetrien
- 5. Das Quark-Modell und die CKM-Matrix
- 6. CP-Verletzung im Standardmodell
- 7. Proton- und Photonstruktur
- 8. Elektroschwache Präzisionsmessungen
- 9. Das Higgs-Boson
- 10. Neutrino-Massen und Neutrino-Oszillationen

Der Cockcroft - Walton - Beschleuniger



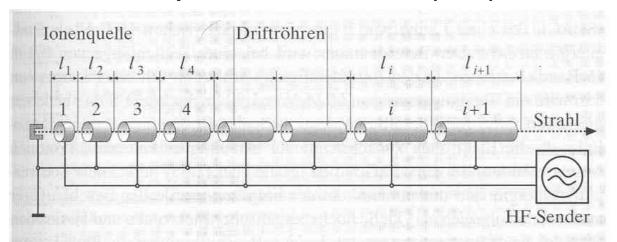

FIG. 2. Voltage multiplier with which Cockcroft and Walton achieved nuclear disintegration in 1932.

- Der erste Beschleuniger (1932).
- Die Kondensatoren werden parallel mit $U(t) = U_0 \sin(2\pi f t)$ geladen und in Reihe entladen.
- Die erreichbare Spannung $U_{
 m out}=2nU_0$ ist wegen Überschlägen limitiert auf ca. 1 MV.
- Abfall unter Last: $U_{
 m drop}=rac{I}{fC}\left(rac{2n^3}{3}+rac{n^2}{2}-rac{n}{6}
 ight)$

Damit gelang Cockcroft und Walton der stimulierte Kernzerfall: $^7_3\mathrm{Li} + ^1_1p(500\mathrm{keV}) \rightarrow 2^4_2\mathrm{He}$.

Ein moderner Cockcroft-Walton-Beschleuniger

ISIS
Rutherford Lab
Oxford


 $E_{H^-}=665{\rm keV}$

Dieses Prinzip wird heute noch in Vorbeschleunigern benutzt.

Das Grundprinzip des Linearbeschleunigers

Das Prinzip stammt von Wideröe (1928).

$$U(t) = U_0 \sin(2\pi f t)$$

- Der Energiegewinn pro Spannungsdurchlauf: $\Delta E = q \, U_0 \sin \Phi_s$
- Abstimmung der Driftlänge, damit die Teilchen in Phase eintreffen $\Rightarrow l_i = \frac{v_i}{2f}$.
- Für relativistische Teilchen gilt $v_i \approx c$ und $l_i \equiv l = \mathrm{const.}$
- Für eine typische Frequenz von $f=10~\mathrm{MHz}$ ergibt sich $l=15~\mathrm{m}$.
- Ungeeignet für hohe Energien, dort benutzt man Hohlraumresonatoren.

Diese Entdeckung bildet die Grundlage für alle Beschleuniger.

Das Zyklotron - der erste Kreisbeschleuniger

Das Prinzip

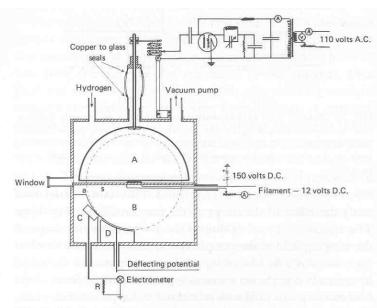


FIG. 13. Diagram of the vacuum chamber for the 1.2-MeV cyclotron built by Lawrence and Livingston at the University of California in 1931. See also Fig. 7.

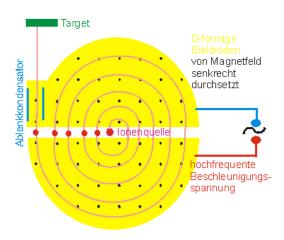
— Nicht relativistisch:

$$\vec{F} = q(\vec{v} \times \vec{B}) = \frac{mv^2}{R}$$

 $\Rightarrow R = \frac{mv}{qB} = \frac{p}{qB}$

Die Zyklotronfrequenz

$$f_z=rac{1}{T}=rac{v}{2\pi R}=rac{qB}{2\pi m}$$
 ist unabhängig vom Impuls!


Das erste Zyklotron

Livingston (1932)

-B=0.52 T, H_2^+ -lonen $\Rightarrow f_zpprox 4$ MHz

— ca. 40 Umläufe ⇒Endenergie 13 keV

A Zyklotron at work

– Limitiert zu:

 $E_p < 20~{
m MeV}$

 $E_{lpha} < 70~{
m MeV}$

Im relativistischen Fall wächst die Masse und die Frequenz muss verkleinert werden. Dies ist der große Nachteil des Zyklotron und führte zum Synchrotron (fester Radius, synchronisiertes B-Feld).

Colliding-Beam versus Fixed-Target Experiment

Schwerpunktsenergie zweier Teilchen:
$$\sqrt{s} = \sqrt{\left[\left(\begin{array}{c}E_1\\ \vec{p}_1\end{array}\right) + \left(\begin{array}{c}E_2\\ \vec{p}_2\end{array}\right)\right]^2} = \sqrt{(E_1+E_2)^2 - (\vec{p}_1+\vec{p}_2)^2}$$

Hochenergie:
$$\left(egin{array}{c} E_1 \ ec{p}_1 \end{array}
ight) \equiv \left(egin{array}{c} E \ ec{p} \end{array}
ight) \quad {
m mit} \quad E \gg m_1 \equiv m$$

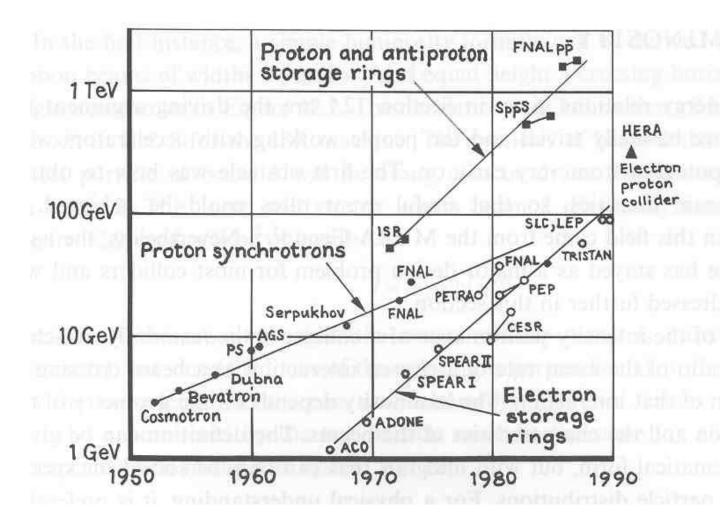
$$\left(egin{array}{c} E_{f 2} \ ec{p_2} \end{array}
ight) = \left(egin{array}{c} E \ -ec{p} \end{array}
ight)$$

$$\sqrt{s}=\sqrt{(E+E)^2-(ec p-ec p)^2}=2E$$

$$\left(egin{array}{c} E_2 \ ec{p}_2 \end{array}
ight) = \left(egin{array}{c} m \ 0 \end{array}
ight)$$

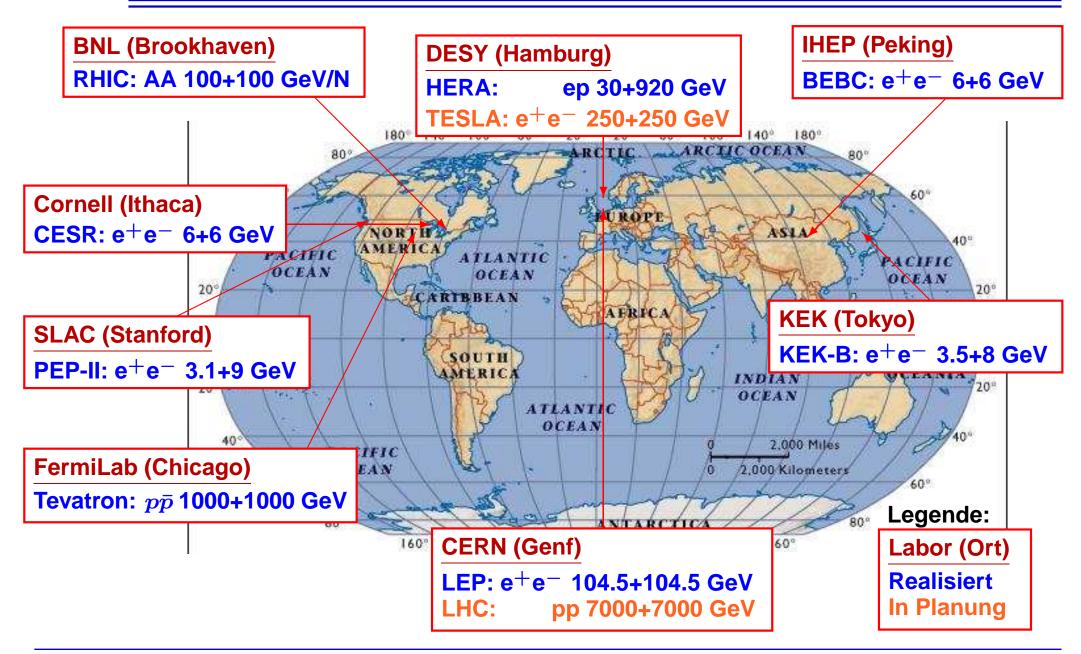
$$\sqrt{s}=\sqrt{\left(E+m
ight)^{2}-\left(p
ight)^{2}}=\sqrt{2m\left(E+m
ight)}$$

Beispiel Tevatron


$$E=1~{
m TeV},\, m=m_{
m p}pprox 1~{
m GeV}$$
 $\sqrt{s}=2~{
m TeV}$

Im Fixed-Target Modus benötigte man dafür $Epprox rac{s}{2m_{
m p}}=2000~{
m TeV}$

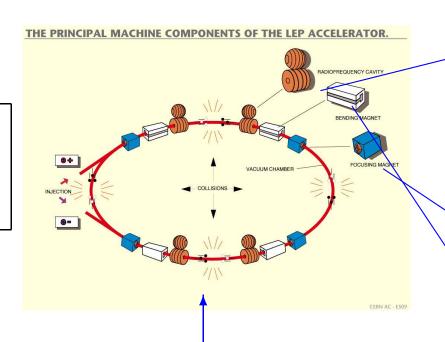
Höchste Schwerpunktsenergien lassen sich nur mit Collidern erzielen.

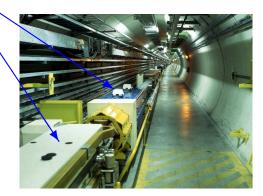

Auszug aus der Geschichte der Teilchenbeschleuniger

Es erfolgte eine kontinuierliche Weiterentwicklung von Hadronund Elektronbeschleunigern über mehr als 70 Jahre.

Auszug aus der Welt der Beschleuniger

Der Large Electron Positron Beschleuniger (LEP)

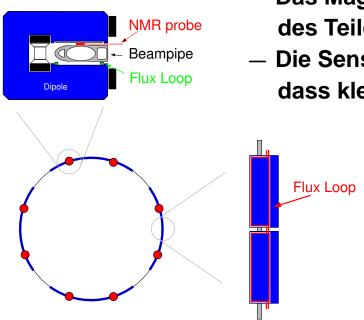



Einige Details zum LEP (1989 - 2000†) Beschleuniger

Technische Daten

 $\begin{array}{c|c} \text{Länge} & 26.7 \text{ km} \\ \text{Gradient} & 7.5 \text{ MV/m} \\ \text{Energie} & 104.5 \text{ GeV} \\ \text{N}_{e^-} & 10^{12} \\ \end{array}$

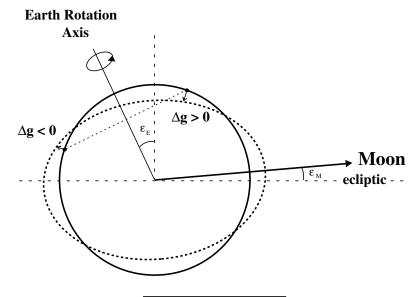
Der Weg ist manchmal ganz schön lang.



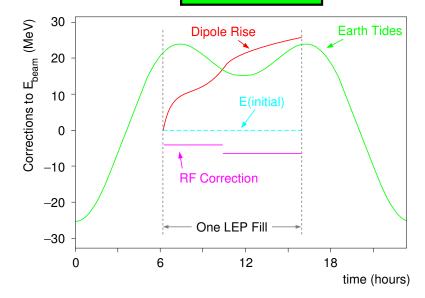
Die Bestimmung der Strahlenergie bei LEP, oder ...

- Die Energie lässt sich durch resonante Depolarisation des Elektronstrahls sehr genau messen $f_{
 m depol}=\left(rac{g_e-2}{2m_ec^2}
 ight)\cdot E_{
 m b}$. Dies liefert $\sigma_{E_{
 m b}}=0.2~{
 m MeV}$.
- Diese Methode funktioniert aber nur ohne Strahlkollisionen. Die Bestimmung der Energie während Strahlkollisionen erfordert eine Extrapolation unter genauer Kenntnis des B-Felds.
- Die L\u00e4nge der Umlaufbahn ist durch die Frequenz der Beschleunigerelemente festgelegt.
 Die Energie bestimmt sich durch das integrale Magnetfeld senkrecht zur Teilchenbahn pro Umlauf.

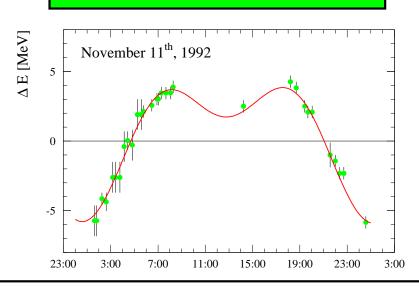
- Das Magnetfeld wird mit NMR Proben gemessen und der Ort des Teilchendurchgang durch elektrostatische Strahlmonitore.
- Die Sensitivität der Strahlenergie auf äußere Effekte ist so groß, dass kleinste Effekte wahrgenommen werden können.


Beispiele sind:

- Die Variation der Gravitation bei der Mondbewegung
- Verlustströme der französisch-schweizerischen Eisenbahnen.


Die genaue Kenntnis des B-Felds ist unabdingbar.

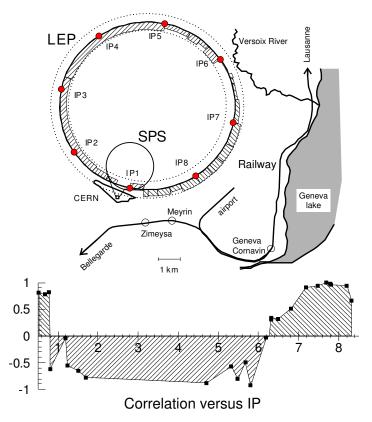
... von Sonne, Mond ...


Das Modell

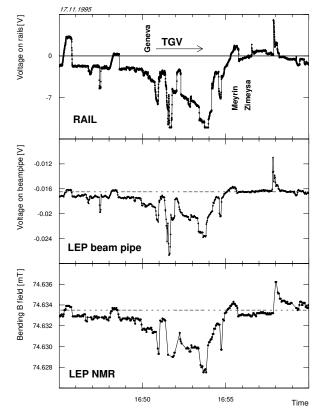
Der Effekt

— Sonne und Mond erzeugen nicht nur Ebbe und Flut sondern deformieren die Erde derart, dass sich die Länge des LEP Rings ändert. Die Längenänderung des Ringes beträgt etwa $\Delta L/L \approx 10^{-8}$ also $\Delta L = 270 \mu m$.

Der Mond ist aufgegangen ...



Guter Monddetektor auch bei wolkigem Wetter.



... und von schnellen Zügen

— Der Streckenplan für Elektronen ...

... und der des Train à Grande Vitesse.

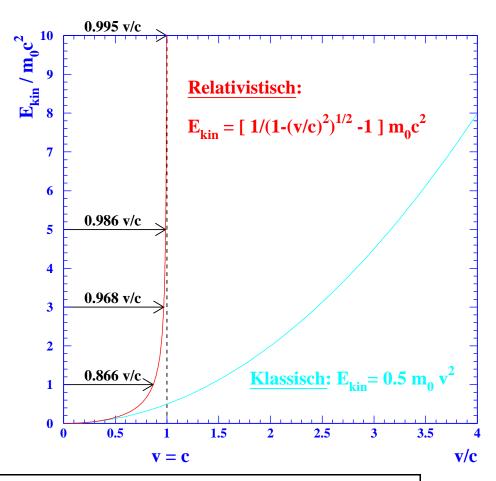
— Bei der Rückführung des Antriebsstroms der Züge über die Bahngleise gibt es Verluste die als parasitäre Ströme über den LEP-Ring laufen. Diese Ströme (ca. 1A bei 2000A Magnetstrom) stören die Magnetisierung der Dipolmagnete und ändern deren Magnetfeld.

Der LEP Beschleuniger ist ein etwas unhandlicher Zugfahrplan für Reisende aus Genf.

Ist ein Beschleuniger wirklich ein 'Beschleuniger'?

LEP:
$$E=20 \rightarrow 100$$
 GeV in 900 s

Klassisch:
$$E_{
m Kin}=0.5\,m_0v^2 = 0.5\,(v/c)^2\cdot m_0c^2$$

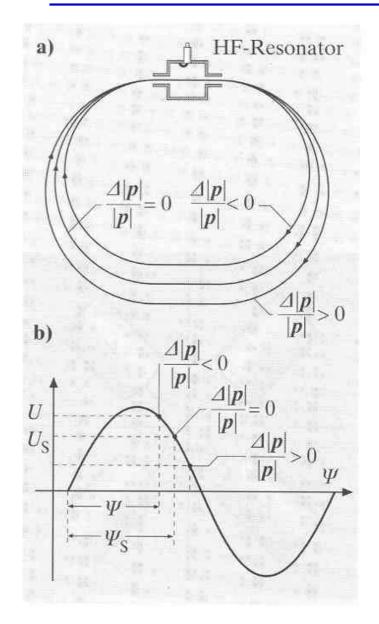

Relativistisch:
$$E=mc^2=m_0\gamma c^2$$
 $E=E_{
m Ruhe}+E_{
m Kin}$ $E_{
m Ruhe}=m_0c^2$

Wie steht es mit der Beschleunigung

20 GeV
$$v = 299792457.902$$
 m/s

100 GeV
$$v = 299792457.996$$
 m/s

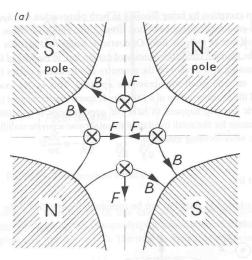
$$c = 299792458$$
 m/s



Resultat:
$$a_{LEP} = \frac{0.094 \text{ m/s}}{900 \text{ s}} \approx 0.0001 \text{ m/s}^2$$
, $a_{Auto} = \frac{100 \text{ km/h}}{10 \text{ s}} \approx 2.7 \text{ m/s}^2$

Ein Beschleuniger testet die Relativitätstheorie und ist eher ein Energiezuführer als ein Beschleuniger!

Die Synchrotronschwingungen


Sebststabilisation des Strahls

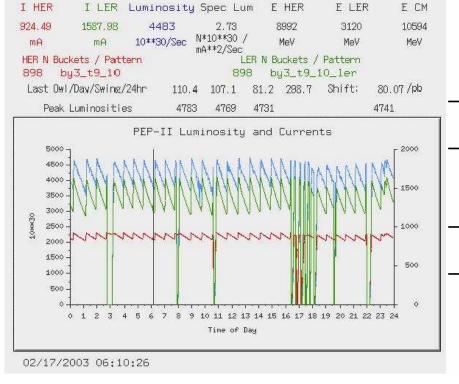
- Teilchen mit zu niedrigem Impuls, $\Delta p/p < 0$, laufen auf kürzeren Bahnen und kommen zu früh.
- Wer zu früh kommt wird belohnt sieht eine höhere Spannung und wird wieder an die Sollbahn herangeführt.
- Das Umgekehrte gilt für Teilchen mit zu großem Impuls, $\Delta p/p>0$.

Die Teilchen führen Schwingungen um die Sollbahn durch - die Synchrotronschwingungen.

Alternating-gradient Fokussierung

$$\left(\begin{array}{c} F_x \\ F_y \\ F_z \end{array}\right) = e \left(\begin{array}{c} 0 \\ 0 \\ c \end{array}\right) \times \left(\begin{array}{c} gy \\ gx \\ 0 \end{array}\right) = \left(\begin{array}{c} -ecgx \\ +ecgy \\ 0 \end{array}\right) = \left(\begin{array}{c} dp_x/dt \\ dp_y/dt \\ dp_z/dt \end{array}\right)$$
 mit: $x' \equiv \frac{dx}{dz} = \frac{v_x}{v_z} = \frac{p_x}{|p|}, \ dt = \frac{dz}{c} \ \text{folgt:} \ \frac{dp_x}{dt} = \frac{dx'|p|}{dz/c} = -ecgx$ also: $x'' = \frac{dx'}{dz} = -\frac{eg}{|p|}x = -kx = \left\{\begin{array}{c} k > 0 \ \text{(F)okussiernd} \\ k < 0 \ \text{(D)efokussiernd} \end{array}\right.$ Abbildung: $\left(\begin{array}{c} x_2 \\ x_2' \end{array}\right) = M_X \left(\begin{array}{c} x_1 \\ x_1' \end{array}\right), \qquad L = z_2 - z_1$

$$M_{
m F} = \left(egin{array}{cc} \cos\Omega & 1/\sqrt{|k|}\sin\Omega \ -\sqrt{|k|}\sin\Omega & \cos\Omega \end{array}
ight) \quad {\sf mit} \ \Omega = \sqrt{|k|}L$$


$$M_{
m Drift} = \left(egin{array}{cc} 1 & L \ 0 & 1 \end{array}
ight), \; M_{
m D} = \left(egin{array}{cc} \cosh \Omega & 1/\sqrt{|m{k}|} \sinh \Omega \ \sqrt{|m{k}|} \sinh \Omega & \cosh \Omega \end{array}
ight)$$

Bei geigneter Wahl der Parameter wirkt ein System alternierender Quadrupole $M = M_{\rm F} M_{\rm Drift} M_{\rm D}$ fokussierend.

Die Luminosität

- Die Luminosität ist die Beschleuniger-Eigenschaft, die die mögliche Ereignisrate bestimmt.
- Spezifische Luminosität: $\mathcal{L}=rac{f\ N_1\ N_2}{4\pi\ \sigma_x\ \sigma_y}$ mit $I_i=q\ n_b\ n_i\ f_b \Rightarrow egin{aligned} \mathcal{L}=rac{I_1\ I_2}{4\pi\ q^2\ f_b\ n_b\ \sigma_x\ \sigma_y} \end{aligned}$
- Aus der integrierten Luminosität, $L=\int \mathcal{L}dt$, folgt die Ereignisrate $N=\sigma\cdot L$, wobei der Wirkungsquerschnitt σ in barn, $1\mathrm{b}=10^{-28}\,m^2$, angegeben wird, ($1\mathrm{pb}=10^{-12}\,\mathrm{b}$).

Ein Beispiel - PEP II am SLAC

$$-~E_{
m e^+}=3.1~{
m GeV}$$
 , $E_{
m e^-}=9~{
m GeV}$

- $-\sigma_xpprox 5~\mu m, \sigma_ypprox 150~\mu m, f=1.37\cdot 10^5/s$ $n_bpprox 900, I=1.5(0.9)~A~ ext{für e}^+ ext{(e}^- ext{)}.$
- $-\mathcal{L}_{\max} \approx 5 \cdot 10^{33}/cm^2 \, s = 5 \cdot 10^{-3}/pb \, s.$
- Das gibt 5 Ereignisse in 1000 s für einen Prozess mit einem Wirkungsquerschnitt von $\sigma=1~pb$.

Hohe Luminosität erfordert viele Teilchen und kleine Strahlquerschnitte.

Synchrotronstrahlung

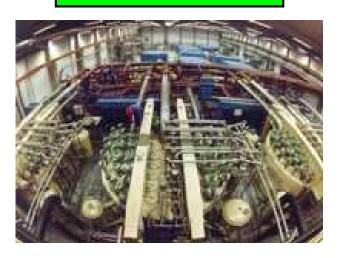
- Jedes beschleunigte geladene Teilchen der Masse m_0 strahlt Photonen ab.
- Liénard-Wichert: $P_{\gamma}=rac{2}{3}r_{
 m e}m_{o}c\gamma^{6}\left\{\left(rac{{
 m d}ec{eta}}{{
 m d}t}
 ight)^{2}-\left[ec{eta} imesrac{{
 m d}ec{eta}}{{
 m d}t}
 ight]^{2}
 ight\}$
- Die Aufteilung in $eta_{||}$ und eta_{\perp} bzw. $p_{||}$ und p_{\perp} liefert $P_{\gamma} = rac{2r_{
 m e}}{3m_{\,o}c}\left\{\left(rac{{
 m d}p_{\,||}}{{
 m d}t}
 ight)^2 + \left(rac{\gamma{
 m d}p_{\,\perp}}{{
 m d}t}
 ight)^2
 ight\}$
- Die Strahlung auf Grund der Impulsänderung in Bewegungsrichtung ist unterdrückt.
 Der Hauptanteil kommt von der Querbeschleunigung.
- Die Strahlungsleistung für $rac{\mathrm{d}p_{||}}{\mathrm{d}t} \ll rac{\gamma\mathrm{d}p_{\perp}}{\mathrm{d}t}$ ist: $P_{\gamma} = rac{2}{3}r_{\mathrm{e}}m_{\mathrm{e}}c^{3}rac{(eta\gamma)^{4}}{r^{2}}$
- Die Strahlung ist proportional zu $\beta\gamma=\frac{p}{m_0},$ d.h. $\frac{P_{\gamma,p}}{P_{\gamma,e}}=\frac{m_e^4}{m_p^4}\approx 10^{-13}$ bei gleicher Energie.

Beispiele:

Maschine	E [GeV]	r [m]	$\Delta E_{ m turn}$ [GeV/Teilchen]	$P_{\gamma},$ [MW/Strahl]	N_{γ} [1/s]
LEP e ⁺ e ⁻	100	3096	-2.86	8.57	$2\cdot 10^{14}$
LHC pp	8000	2669	-0.0119	0.0103	$1\cdot 10^{13}$

Riesige Verlustleistung bei LEP \Rightarrow höhere Energien erfordern einen Linearbeschleuniger.

Die Hadron Elektron Ring Anlage (HERA)


Beschleunigerkomplex

HERA-Tunnel

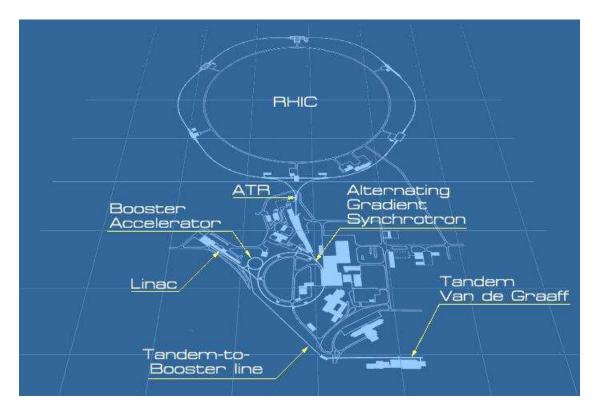
Heliumverflüssiger

- Umfang: 6336 m, Teilchenenergien: $E_p(E_e)=920(30)~{\rm GeV}\Rightarrow \sqrt{s}=332~{\rm GeV},$ Luminosität: $\mathcal{L}=1.4\cdot 10^{31}/cm^2~s$, Magnetfeld: $B_e(B_p)=0.274(4.65)$ Tesla.
- So hohe Magnetfelder lassen sich nur mit supraleitenden Magneten erreichen. Dies erfordert die Produktion von flüssigem Helium zur Kühlung der Magneten auf ca. 3K.

Der einzige ep-Beschleuniger und der erste Beschleuniger mit supraleitenden Magneten.

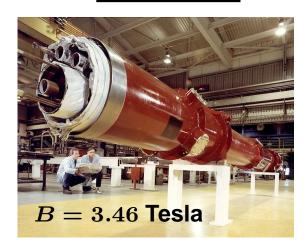
Der Proton-Antiproton Beschleuniger Tevatron

Ein paar Details


	Run I	Run II
	1992 - 1996	2001 - 20xx
Umfang [km]	6.4	6.4
$E_{\mathbf{p},ar{\mathbf{p}}}$ [TeV]	0.9	0.98
Teilchenpakete	6x6	140x103
N_p /Paket [10^{11}]	2.3	2.7
$N_{ar{p}}$ /Paket [10^{11}]	0.55	1.0
$\mathcal{L}_{\mathrm{int}}$ [fb $^{-1}$]	0.11	10-30

Das Tevatron ist zur Zeit der Beschleuniger mit der höchsten Schwerpunktsenergie.

Der Relativistic Heavy Ion Collider (RHIC)


Der Beschleunigerkomplex

- Umfang: 3.9 km

- Energie: $E=100~{
m GeV/Nukleon}$

Ein Magnet

In 2003 - Deuteron auf Gold

- Reaktion: ${}_{1}^{2}\mathrm{H}^{+} + {}_{79}^{197}\mathrm{Au}^{+79} \to X$

- 110 bunches mit $N_{\rm x}/{\rm bunch}$ von

 $N_{
m H}=6\cdot 10^{10}$ und $N_{
m Au}=8\cdot 10^8$

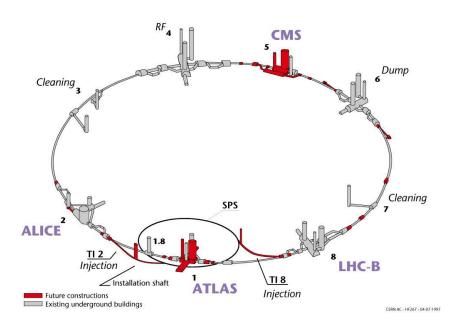
- Luminosität: $\mathcal{L}=6\cdot 10^{27}/cm^2\,s$

Ein idealer Platz zur Untersuchung der Schwerionenphysik, z.B. Quark-Gluon-Plasma.

Der LHC - ein Proton-Proton Beschleuniger (2007⁺⁺)

Alice

Schwere Kerne, ...


LHC-B

Materie ← Antimaterie,

ATLAS / CMS

Higgs Produktion, ...

Das Herzstück des LHC - die supraleitenden Magnete

Technische Daten

L = 26.7 km

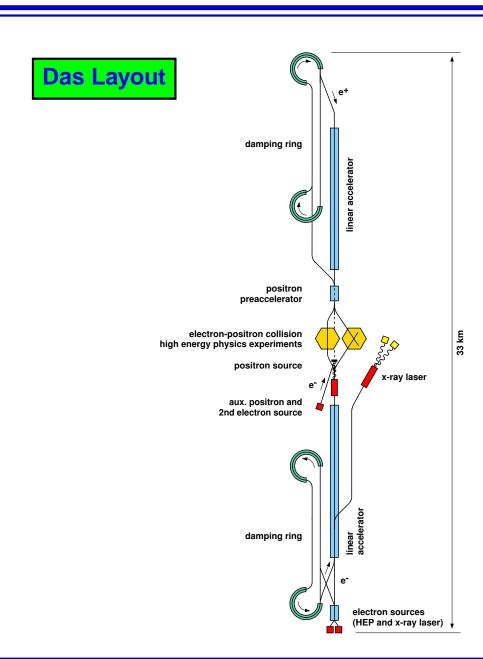
 $E_p = 7 \text{ TeV}$

 $N_{\rm p} = 1.1 \cdot 10^{11} / \text{Strahl}$

Lumi Erwartungen

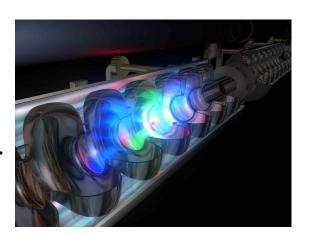
 10 fb^{-1} /a beim Start 100 fb^{-1} /a nominal

15 m
23.8 t
8.3 T
1.9 K
12000 A
7.1 MJ


Das TESLA Projekt - der Plan

Die Lage

Technische Daten


 $\begin{array}{c|c} \text{Länge} & 33 \text{ km} \\ \text{Gradient} & 23.4 \text{ MV/m} \\ \text{E}_e & 250 \text{ GeV} \\ \text{N}_e & 2 \cdot 10^{10} \text{/Paket} \\ \text{N}_{\text{Paket}} & 2820 \\ \text{Kavitäten} & 21000 \\ \text{Luminosiät} & 3.4 \cdot 10^{34} \text{/cm}^2 \text{s} \\ \end{array}$

Das TESLA Projekt - die Entwicklungsarbeiten

Es ist ein langer Weg von der Prinzipskizze

über die Kavität

und die Tesla Test Facility

zum engültigen Beschleuniger.

TESLA liefert die Technik für den geplanten ILC.

Zusammenfassung

- Beschleuniger werden seit 1932 zur Untersuchung elementarer Teilchen eingesetzt.
- Die ersten Experimente waren Fixed-Target Experimente an Beschleunigern, in denen die Beschleunigungsstrecke nur einmal durchlaufen wurde.
- Heute sind die meisten Beschleuniger Speicheringe, in denen Teilchen-Antiteilchen Paare, e^+e^- oder $p\bar{p}$, zur Kollision gebracht werden. Es gibt aber auch Elektron-Proton- und Nukleon-Nukleon Beschleuniger.
- Die heute erreichten Schwerpunktsenergien sind 209 GeV und 2000 GeV für ${\rm e^+e^-}$ und $p\bar{p}$ Beschleuniger.
- Die wesentlichen Limitierungen der Speicherringe sind die Synchrotronstrahlung für Elektron-Maschinen und das erreichbare Magnetfeld für Proton-Maschinen.
- Maschinen mit wesentlich höheren Schwerpunktsenergien sind in Bau oder Planung. Der Linear Collider für 500-1000 GeV $\rm e^+e^-$ -Kollisionen ist in Planung und der Large Hadron Collider für 14000 GeV pp-Kollisionen ist bereits im Bau.