Teilchenphysik mit höchstenergetischen Beschleunigern (Tevatron und LHC)

V2: Teilchenphysik, offene Fragen und aktuelle Projekte

23. Oktober 2007 Richard Nisius (MPP München) nisius@mppmu.mpg.de

TU München, WS 07/08, S. Bethke und R. Nisius

Übersicht	Neutrinos	CP Verletzung	Higgs	СМВ	Supersymmetrie	Kalte Dunkle Materie	Zusammenfassung

Vorlesungsthemen

1.	Einführung: Stand der Teilchenphysik	16.10.07
2.	Teilchenphysik: offene Fragen und aktuelle Projekte	23.10.07
3.	Hadronenbeschleuniger: Tevatron und LHC	30.10.07
4.	Teilchendetektoren an Tevatron und LHC (I)	06.11.07
5.	Teilchendetektoren an Tevatron und LHC (II)	13.11.07
6.	Trigger, Datennahme und Computing	20.11.07
7.	Monte Carlo Generatoren und Detektor Simulation	27.11.07
8.	QCD, Jets, Strukturfunktionen	04.12.07
9.	Standard Modell Tests	11.12.07
10.	CP-Verletzung	18.12.07
11.	Top-Quark Physik	08.01.08
12.	Suche nach dem Higgs-Boson	15.01.08
13.	Supersymmetrie	22.01.08
14.	Andere Erweiterungen des Standard Modells	29.01.08
15.	Ausblick & Zukunftsprojekte	05.02.08

Wechselwirkungen im Standardmodell

Das mathematische Konzept

- Eine Kombination von Eichgruppen: $U(1)_{\rm Y} \times SU(2)_{\rm L} \times SU(3)_{\rm C}$ mit lokaler Eichinvarianz, und drei Kopplungskonstanten: $\alpha_1 = \frac{5}{3} (\frac{e}{\cos \theta_W})^2$, $\alpha_2 = (\frac{e}{\sin \theta_W})^2$ und $\alpha_3 = \alpha_s$.

Zur Beschreibung der Wechselwirkungen genügen vier fundamentale Vertizes.

Übersicht Neutrinos **CP** Verletzung Hiaas Supersymmetrie Kalte Dunkle Materie Zusammenfassung

Das Standardmodell - seine Stärken

WS 07/08

Eine Erfolgsgeschichte

(Stand 2007)

- Daten und Theorie stimmen perfekt überein.
- Messungen auf sub Promille Genauigkeit, z.B. $m_7 = (91.1875 \pm 0.0021)$ GeV entspricht 0.02 Promille!!

Konsistenz direkter und indirekter Messungen

- Direkt:
- $M_W = (80.360 \pm 0.020) \text{ GeV}$ — Indirekt:
- Direkt:
- Indirekt:
- $M_t = (170.9 \pm 1.8) \text{ GeV}$ $M_t = (172.6^{+13.2}_{-10.2}) \text{ GeV}$

 $M_W = (80.398 \pm 0.025) \text{ GeV}$

- **Higgs erlaubter Bereich**
- $M_H = 76^{+33}_{-24}$ GeV mit 68% CL - Best fit:
- Oberes Limit: *M_H* < 144 GeV mit 95% CL

Also warten wir auf die Entdeckung des Higgs-Bosons und schliessen danach das Buch?

S. Bethke, R. Nisius

V02 23. Oktober 2007

Das Standardmodell - seine Schwächen

Bekannte Generationen

- Aus $Z \rightarrow \nu \bar{\nu} \Rightarrow$ es gibt nur drei, an das Z koppelnde, leichte Neutrinos.
- Warum drei Generationen ?
- $-\Sigma Q = 0 + (-1) + 3 \cdot \frac{-1}{3} + 3 \cdot \frac{2}{3} = 0$, gut zur Vermeidung der Dreiecksanomalie, aber warum?
- Gibt es eine 4. Generation mit $m_{\nu} > \frac{1}{2} m_Z$? V02

Baryon-Anti-Baryon Asymmetrie

 $-q \rightarrow q\bar{q}$ und $\gamma \rightarrow q\bar{q}$, $\Sigma B \equiv 0!$ Wo ist die fehlende Antimaterie?

Merkwürdige Massenhierarchie

Es bleiben viele offene Fragen.

Übersicht Neutrinos **CP** Verletzung Hiaas Supersymmetrie Kalte Dunkle Materie Zusammenfassung

Zur Erinnerung - die drei Flavour-Eigenzustände

V02

Die Massen- und Flavour-Eigenzustände

- Die Flavour-Eigenzustände sind Superpositionen der Massen-Eigenzustände:

$$\begin{array}{l} |\nu_{\alpha}\rangle \equiv \sum_{i} U_{\alpha i} |\nu_{i}\rangle & \text{mit } \alpha = e, \mu, \tau \quad \text{und } i = 1, \dots, N. \\ - \text{Drei Flavour} & \begin{pmatrix}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{pmatrix} = \begin{pmatrix}U_{e1} & U_{e2} & U_{e3}\\U_{\mu1} & U_{\mu2} & U_{\mu3}\\U_{\tau1} & U_{\tau2} & U_{\tau3}\end{pmatrix} \cdot \begin{pmatrix}\nu_{1}\\\nu_{2}\\\nu_{3}\end{pmatrix}, \text{ mit } U = U_{23} U_{13} U_{12} \end{pmatrix}$$

- Die Ausbreitung in Raum und Zeit wird durch die Massen-Eigenzustände bestimmt. Wählt man $\vec{p} \uparrow \uparrow \vec{r}$ und benutzt $m_i \ll p_i \equiv p \approx E$ und v = c so folgt $E_i = \sqrt{p_i^2 + m_i^2} \approx p_i + \frac{m_i^2}{2E}$, und damit $|\nu_i(t)\rangle = e^{-i(E_it - \vec{p}\vec{r})} |\nu_i(0)\rangle = e^{-i\frac{m_i^2t}{2E}} |\nu_i(0)\rangle$.
- − Die Wechselwirkung mit Materie ist durch die Flavour-Eigenzustände gegeben. Ein Beispiel ist die Neutrino-Elektron Streuung: $ν_e e^- → ν_e e^-$.
- Die Wahrscheinlichkeit ein Neutrino, das zur Zeit t = 0 als α gestartet ist, im Zustand β zu finden ist: $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = |\langle \nu_{\beta}(t) | \nu_{\alpha}(0) \rangle|^{2} = |\sum_{i} U_{\beta i}^{\star} e^{+i \frac{m_{i}^{2} t}{2E}} U_{\alpha i}|^{2} \cdot |\langle \nu_{i} | \nu_{i} \rangle|^{2}$
- Dieser Effekt ist analog zu den Oszillationen pseudoskalarer Mesonen und wird als Neutrino-Oszillation bezeichnet.

Die Suche nach Neutrino-Massen ist ein sehr weites experimentelles Feld.

Übersicht	Neutrinos	CP Verletzung	Higgs	СМВ	Supersymmetrie	Kalte Dunkle Materie	Zusammenfassung

Neutrino-Oszillationen - der Zwei-Flavour Fall

- Im Zwei-Flavour Fall, z.B. ν_e , ν_μ reduziert sich die Maki-Nakagawa-Sakata Matrix auf:

$$\left(\begin{array}{c}\nu_{\mathbf{e}}\\\nu_{\mu}\end{array}\right) = \left(\begin{array}{cc}\cos\vartheta&\sin\vartheta\\-\sin\vartheta&\cos\vartheta\end{array}\right)\cdot \left(\begin{array}{c}\nu_{1}\\\nu_{2}\end{array}\right)$$

- Die Wahrscheinlichkeit ein zur Zeit t = 0 z.B. als ν_e in der Sonne gestartetetes Neutrino zur Zeit t, also z.B. auf der Erde, auch als ν_e wiederzufinden, ergibt sich aus:

$$P(\nu_e \rightarrow \nu_e) = |\langle \nu_e(t) | \nu_e(0) \rangle|^2 = 1 - \sin^2(2\vartheta) \sin^2(\frac{\Delta m^2 t}{4E})$$

Damit ist die Oszillationswahrscheinlichkeit:

$$P(
u_e
ightarrow
u_\mu) = \sin^2(2\vartheta) \sin^2(rac{\Delta m^2 t}{4E})$$

- Mit 200 MeVfm \equiv 1 folgt 1/*eV* = 2 · 10⁻⁷ m. Damit ergibt sich aus der Oszillationslänge $L = \pi \frac{4E}{\Delta m^2}$ das L über E Verhältnis:

$$rac{L/km}{E/GeV} = rac{2.5}{\Delta m^2/eV^2}$$

Das Verhältnis L/E bestimmt die Sensitivität auf verschiedene Massenbereiche.

Übersicht Neutrinos CP Verletzung Higgs CMB Supersymmetrie Kalte Dunkle Materie Zusammenfassung

Natürliche und künstliche Neutrinoquellen

- Die Hauptquellen von Neutrinos sind:
 - 1) Atmosphärische Neutrinos (ν_e , $\bar{\nu}_e$, ν_μ , $\bar{\nu}_\mu$): Die Erdatmosphäre wird ständig von hochenergetischer kosmischer Strahlung getroffen. Diese Strahlung besteht vornehmlich aus Photonen und Protonen, aber auch aus schweren Kernen. Beim Auftreffen auf die Erdatmosphäre in $\mathcal{O}(10)$ km Höhe entwickeln sich hadronische Schauer. Die Neutrinos entstehen hauptsächlich durch den Pion-Zerfall, $\pi^{\pm} \rightarrow \mu^{\pm} \stackrel{(-)}{\nu_{\mu}}$ und $\mu^{\pm} \rightarrow e^{\pm} \stackrel{(-)}{\nu_{\mu}} \stackrel{(-)}{\nu_{e}}$.
 - 2) Sonnen-Neutrinos (ν_e): Bei der Wasserstofffusion in der Sonne entstehen Neutrinos in der Reaktion $4p \rightarrow \frac{4}{2}$ He + $2e^+ + 2\nu_e$.
 - Supernova-Neutrinos (ν_e, ν
 _e, ν
 _μ, ν
 _τ, ν
 _τ, ν
 _τ): Bei einer Supernova-Explosionen wie der Explosion der SN1987A gibt es einen sehr kurzern Ausbruch von Neutrinos aller Sorten.
 - 4) Natürliche Radioaktivität (ν_e , $\bar{\nu}_e$): In den Beta-Zerfällen der Kerne wie 3_1 H, ${}^{187}_{75}$ Re oder ${}^{222}_{88}$ Ra entstehen ν_e und $\bar{\nu}_e$.
 - 5) Beschleuniger-Neutrinos $(\nu_{\mu}, \bar{\nu}_{\mu})$: Durch Beschuss von Be- oder Al-Targets mit Protonen werden Pionen und Kaonen erzeugt. Aus deren Zerfällen erhält man ν_{μ} und $\bar{\nu}_{\mu}$ mit einer geringen Beimischung von ν_{e} und $\bar{\nu}_{e}$ aus $K^{\pm} \rightarrow \pi^{0} e^{\pm \binom{(-)}{\nu_{e}}}$ Zerfällen.
 - 6) Reaktor-Neutrinos ($\bar{\nu}_e$): In den Beta-Zerfällen schwerer Kerne im Kernreaktor entstehen Elektron-Antineutrinos, $\bar{\nu}_e$.

Die verschiedenen Quellen und Experimente testen verschiedene Phasenraumbereiche.

Der Stand der Dinge

(S. Brice EPS2007)

- Aus Unitarität folgt: e.g. $\sum_i |U_{ei}|^2 = 1$

- Aus Sonnen- ν (SNO,...) verifiziert mit Reaktor- ν (Kamland, ...)

 $Min(m_i) < 2.2 \text{ eV}$

Dieses Muster erklärt die Beobachtungen durch Neutrino-Oszillationen.

Die CP-Verletzung im frühen Universum

- Wir leben in einem Universum, in dem es mehr Baryonen als Antibaryonen gibt.
- Im Big-Bang, im thermischen Gleichgewicht, sind Teilchen und Antiteilchen in gleicher Anzahl entstanden. Damit muss es einen Effekt geben, der diese Asymmetrie erzeugt hat.
- Sakharov hat 1967 drei Bedingungen für die Entstehung dieser Asymmetrie aufgestellt:
 - 1) Die Existenz Baryonenzahl-verletzender Zerfälle.
 - 2) Das Auftreten von Reaktionen die C- und CP-verletzend sind.
 - 3) Die Abweichung vom thermischen Gleichgewicht.
- Betrachten wir den Zerfall eines Teilchens X unter Änderung der Baryonenzahl, $\Delta B \neq 0$. Die Zerfallsrate sei $f = \Gamma(X \to Y(\Delta B))$ und damit $\overline{f} = \Gamma(\overline{X} \to \overline{Y}(-\Delta B))$.
- Die Differenz der Baryonenzahl durch die Zerfälle von X und \overline{X} ist B_{net} mit: $B_{\text{net}} = f \cdot \Delta B + \overline{f} \cdot (-\Delta B) = (f - \overline{f}) \cdot \Delta B \Rightarrow B_{\text{net}} \neq 0$ nur für $f \neq \overline{f}$ und $\Delta B \neq 0$.
- Im thermischen Gleichgewicht ist die Lebensdauer des Gesamtsystems unendlich groß im Vergleich zu den Reaktionszeiten. Deswegen würde sich nach einiger Zeit, trotz der unterschiedlichen Zerfallsraten, die gleiche Population der Zustände Y und Y einstellen.

Die CP-Verletzung ist essentiell zum Verständnis der Baryonenasymmetrie im Universum.

Übersicht	Neutrinos	CP Verletzung	Higgs	СМВ	Supersymmetrie	Kalte Dunkle Materie	Zusammenfassung

Von der CKM-Matrix zum Unitaritätsdreieck

$$V^{\dagger} V = \begin{pmatrix} V_{ud}^{\star} & V_{cd}^{\star} & V_{td}^{\star} \\ V_{us}^{\star} & V_{cs}^{\star} & V_{ts}^{\star} \\ V_{ub}^{\star} & V_{cb}^{\star} & V_{tb}^{\star} \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ut} \\ V_{cd} & V_{cs} & V_{ct} \\ V_{td} & V_{ts} & V_{tt} \end{pmatrix}$$

$$\begin{pmatrix} V_{cd} & V_{cs} & V_{c} \\ V_{td} & V_{ts} & V_{t} \end{pmatrix}$$

$$\begin{pmatrix} ub \\ cb \\ tb \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Die Darstellung einer Unitaritätsbedingung z.B. $V_{3k}^{\star}V_{k1} = \mathbf{0} = V_{ub}^{\star}V_{ud} + V_{cb}^{\star}V_{cd} + V_{tb}^{\star}V_{td}$ in der komplexen Zahlenebene liefert ein Unitaritätsdreieck.
- In der Wolfenstein-Parametrisierung, entwickelt bis $\mathcal{O}(\lambda^5)$, lautet diese Unitaritätsbedingung: $A\lambda^{3}(\bar{\rho}+i\bar{\eta})-A\lambda^{3}+A\lambda^{3}(1-\bar{\rho}-i\bar{\eta})=0$
- Normiert man $V_{cb}^{\star}V_{cd} = A\lambda^3$ auf 1 so folgt: $(\bar{\rho} + i\bar{\eta}) + (1 - \bar{\rho} - i\bar{\eta}) - 1 = 0$

Bei CP-Erhaltung sind die Dreiecksflächen Null.

Übersicht Neutrinos **CP** Verletzung Hiaas Supersymmetrie Kalte Dunkle Materie Zusammenfassung

Der asymmetrische e⁺e⁻ Beschleuniger PEPII am SLAC

S. Bethke, R. Nisius

23. Oktober 2007

Richard Nisius

Higgs CME

Supersymmetrie

Experimente an asymmetrischen e⁺e⁻ Speicherringen

Der Belle Detektor

Der Babar Detektor

Diese beiden Experimente haben die CP-Verletzung im B-Sektor etabliert.

Ein Beispiel - das Resultat für sin 2β

Das Unitaritätsdreieck

... mit der Lupe betrachtet

Die Genauigkeit für sin 2β liegt mittlerweile bei 4%.

WS 07/08

Das Standardmodell - Higgs

Das Higgs-Feld

- Skalares komplexes Dublett

$$\left[\begin{array}{c} \Phi_1 \\ \Phi_2 \end{array} \right) \! \cdot \!$$

 Drei der vier Freiheitsgrade ergeben die longitudinalen Freiheitsgrade der W[±] und Z-Bosonen, der vierte Freiheitsgrad liefert das skalare Higgs-Boson.

Die Kopplungen des Higgs-Bosons

- Die Yukawa Kopplung an Fermionen:

$$c_{\rm Hff} = i \frac{m_f}{v}, \ (v^2 = \frac{1}{G_F \sqrt{2}})$$

— Die Kopplung an W/Z - Bosonen:

W/Z	
W/7	ł
W/L>	

$$\begin{split} c_{\rm HWW} &= \frac{i}{2} (e \sin \theta_{\rm W})^2 \ v \ g_{\mu\nu} \\ &= i e \sin \theta_{\rm W} \ \frac{m_W}{m_W} \ g_{\mu\nu} \\ c_{\rm HZZ} &= c_{\rm HWW} / (\cos \theta_{\rm W})^2 \end{split}$$

Symmetriebrechung

$$\mu^2 = M_H^2/2, \quad \lambda = \frac{M_H^2}{v^2}$$

$$V_{\min}(\Phi) = V(\frac{v}{\sqrt{2}}) = \frac{-M_{H}^{2}}{16v^{2}}$$

Einige Schwächen

 Die Kopplungen an die Fermionen sind von Hand eingeführt.

 Die Masse des Higgs-Bosons ist nicht vorhergesagt.

Nach dem Higgs wird eifrig gesucht.

Das Tevatron ist zur Zeit der Beschleuniger mit der höchsten Schwerpunktsenergie.

Higgs-Suche am Tevatron

Lumi und Lumi-Erwartung

- 3.0 fb⁻¹ bis heute
- 4-8 $\rm fb^{-1}$ bis Ende 2009

Suchkanäle

$$qq' \rightarrow Z/W \rightarrow Z/WH.$$

$$-M_{\rm H} > 135 \, {
m GeV},$$

 $gg \rightarrow H \rightarrow WW^*$

Die Umfrage: Was kann im RUN II erreicht werden?

Realist: Es gibt eine Verbesserung gegenüber LEP ab ca. 2 fb⁻¹ Pessimist: Mit 10 fb⁻¹ wird $M_H < 180$ GeV mit 95% CL ausgeschlossen. Optimist: Für $M_H = 116$ GeV und 15 fb⁻¹ ist eine 5 Sigma Entdeckung möglich.

Alles ist möglich, wir werden warten müssen. Und um sicher zu gehen ...

Der LHC Beschleuniger - und CMS

Der Beschleuniger

- L = 26.7 km
- $-E_p = 7 \text{ TeV}$
- N_{p} = $1.1\cdot10^{11}/$ Strahl
- $-\mathcal{L}_{int} = 10 \text{ fb}^{-1}/a \text{ Start}$
- $\mathcal{L}_{int} = 100 \text{ fb}^{-1}/a \text{ nominal}$

Die Dipol-Magnete

- Länge = 15 m
- Gewicht = 23.8 t
- B-Feld = 8.3 T
- Temperatur = 1.9 K
- Strom = 12000 A - Energie = 7.1 MJ

Das CMS Experiment

- B-Feld = 4 T
- Gewicht = 12500 t
- Tracker = 210 m² Silizium
- 37 Länder, 155 Institute
 2000 Wissenschaftler

Der LHC und die LHC Experimente, ein Unterfangen ohne Beispiel, startet in 2008.

Das Higgs - Entdeckungspotential am LHC

– Das ATLAS Entdeckungspotential ist besser als 10 σ für ein Jahr mit Design-Luminosität.

Das Standard Model Higgs-Boson kann uns am LHC wohl nicht verborgen bleiben.

WMAP (Wilkinson Microwave Anisotropy Probe) - das Ziel

WS 07/08

Grundlagen (z.B. J. Lesgourgues 2005)

- Kosmologisches Prinzip: Auf großen Skalen ist das Universum homogen und isotrop.
- Allgemeine Relativitätstheorie
- Friedmann-Lemaître Lösung der

Einsteingleichung: $\Omega_{R} + \Omega_{M} + \Omega_{\Lambda} = \Omega_{0}$

Strahlung (R) + Masse (M) + Kosmologische Konstante (Λ) = Krümmung (0)

Falls $\Omega_0 = 1 \Rightarrow$ Das Universum ist flach.

Fragestellungen

- Expansion des Universums?
- Materiedichte des Universums?
- Anteil Dunkler Materie und Dunkler Energie?

Ansatz

Untersuche CMB Fluktuationen.

S. Bethke, R. Nisius

V02 23. Oktober 2007 **Bichard Nisius**

WMAP - die Mission

Das Messinstrument

Der Beobachtungspunkt

In drei Mondphasen +

100 Tagesreisen zu L2

 Der L2 Erde-Sonne Lagrangepunkt ist ideal, da: temperaturstabil, geschützt vor Mikrowellen der Erde und fast 100% effizient, da Sonne, Mond und Erde im Rücken sind.

deployed solar array w/web shielding

- Strahlung: $\nu_{max}(T) = 58.79 \cdot 2.725 \text{ GHz} = 160 \text{ GHz}.$
- Blickfeld: $3.5^{\circ} \times 3.5^{\circ}$, Öffnungswinkel: 141°, Sensitivität: 35 μ K.
- Leistung: 419 W, Messfrequenzen: 22, 30, 40, 60, 90 GHz.
- Auflösung: 0.93°, 0.68°, 0.53°, 0.35°, <0.23° (FWHM)
- Uplink: Ein Mal pro Woche, Downlink: Ein Mal pro Tag.

Die Mission dauert seit 6/2001 und hat aufregende Ergebnisse geliefert.

WMAP - die Resultate

Ein Bild des Raumes

- Eine sichbare Anisotropie

Die Zusammensetzung

- Krümmung: $\Omega_0 = 1$, das bedeutet: Das Universium ist flach.
- Materie: $\Omega_M = 0.234 \pm 0.035$ und davon ist nur ein kleiner Teil, $\Omega_b = 0.042 \pm 0.003$, normale baryonische Materie.
- Es gibt 20% Dunkle Materie, von der wir fast nichts wissen.
- Energy: $\Omega_{\Lambda} = 0.75$, damit gibt es 75% Dunkle Energie, von der wir rein gar nichts verstehen.

Der größte Teil der Welt ist Physik außerhalb des SM.

Übersicht Neutrinos **CP** Verletzung Hiaas Supersymmetrie Kalte Dunkle Materie Zusammenfassung

Super Symmetrie SUSY - ein Weg aus der Krise?

WS 07/08

SUSY in der Nußschale

- Neue Symmetrie O| Fermion $\rangle = |$ Boson \rangle .
- Neue Teilchen als Superpartner zu SM Teilchen.
- Die SUSY Teilchen mischen zu den beobachtbaren Zuständen
- Fall die R-Parität, $R_P = (-1)^{3B+L+2S}$, erhalten ist, ist das leichteste SUSY Teilchen, das LSP, stabil.
- Gebrochene Symmetrie da sonst Fermion- und Bosonmassen identisch sein müssten.

Viele nützliche Eigenschaften

- SUSY löst das Hierarchie Problem, $M_P/M_W \approx 10^{19}$,
- ist in Einklang mit einem vom SM bevorzugten leichten Higgs-Boson,
- liefert einen Kandidaten f
 ür kalte Dunkle Materie.
- und erlaubt die Vereinheitlichung der Kopplungen.

Supersymmetrie löst einige Probleme des SM.

S. Bethke, R. Nisius

V02 23. Oktober 2007

Warum ist SUSY attraktiv

Die Kopplungen α_i werden die durch
 Schleifendiagramme energieabhängig, z.B.:

Die Vereinigung der Kopplungen ist ein gutes Argument für Supersymmetrie.

Supersymmetrie

Cryogenic Rare Event Search with Superconducting Thermometers

Das CRESST Experiment

- Suche nach Weakly Interacting Massive Particles, WIMPs.
- Signal: WIMPs ($\sigma \propto A$), Bgd: α, β, γ und Neutronen.
- Messung von Phononen und Licht.
- Rückstoß Phononen bei 12mK. Signal proportional $E \approx$ gleich.
- Szintil.-Licht: Elektron > Kerne
- Das Verhältnis Phonon/Licht selektiert das Signal.

Messmethode

Messung von ΔR in Superconducting Quantum Interference **Devices, SQUIDs**

Die WIMP Sensitivität steigt mit der Unterdrückung der Untergrundreaktionen.

WS 07/08

WIMP Suche - Resultate von CRESST

Die Unterdrückungsfaktoren

Phononen vs Licht

- 90% aller Rückstöße sind unterhalb von 1).
- 10% aller Rückstöße sind unterhalb von 3).
- 90% aller W-Rückstöße sind unterhalb von 2).

Der Signalbereich ist fast frei von Untergrund.

Direkte WIMPs Suche - Status 2007

– Die DAMA Evidenz f
ür WIMPs ist von den anderen Experimenten nicht best
ätigt worden

Die Suche nach den WIMPs geht damit in die nächste Runde.

Zusammenfassung

- Das Standardmodell (SM) ist auf Sub-promille genau verifiziert worden. Trotz dieses großen Erfolges wissen wir, dass es unvollständig ist.
- Schwächen des SM, sind die ad-hoc Einführung der Teilchenmassen, die Massenhierarchie, die Anzahl der Familien, das nicht erklärte Ladungsspektrum, ….
- Mit den Neutrino-Oszillationen wurde die erste Physik jenseits des SM gefunden.
 Die gemessene CP-Verletzung kann die Baryonasymmetrie erklären.
- Die Suche nach dem Higgs-Boson geht in die n\u00e4chste Runde. Nach den ersten Jahren des LHC sollten wir besser wissen was f\u00fcr Teilchenmassen zust\u00e4ndig ist.
- Die WMAP Resultate sagen uns, dass Physik jenseits des SM das Universum dominiert. Baryonische Materie hat einen Anteil von nur 4%.
- Die Suche nach dunkler Materie geht weiter, mit bei tiefsten Temperaturen mit Kryodetektoren, und bei höchten Energien an Beschleunigern.

Nächste Vorlesung: Vorlesung 3, 27. Oktober 9:15 Uhr, Prof. S. Bethke.