Teilchenphysik am MPP am Beispiel von ATLAS

München, 26. Jun 2012

Richard Nisius (MPP München)

Richard.Nisius@mpp.mpg.de

Die Organisation der Max-Planck-Gesellschaft

- Die Max-Planck-Gesellschaft (MPG) ist eine unabhängige Forschungs-Organisation.
- Die MPG fördert Forschung hauptsächlich in ihren eigenen Instituten, den MPIs.
- Zur Zeit hat die MPG 80 Forschungsinstitute mit etwa 17000 Beschäftigten.
 Die MPG hat 5200 Wissenschaftler, zusammen mit mehr als 3700 Doktoranden, 1300 Post-Doktoranden, und 800 Gastwissenschaftlern.
- Die Forschungsthemen sind aufgeteilt in drei Sektionen. Dies sind die Sektionen f
 ür Biologie und Medizin, f
 ür Chemie, Physik and Technik (CPT), und f
 ür Geisteswissenschaften.
- Fünf Institute der CPT Sektion befinden sich im Münchner Raum, und zwar die MPIs für <u>Astrophysik</u>, <u>Extraterrestrische Physik</u>, <u>Plasmaphysik</u>, und <u>Quantumoptik</u> in Garching, und in München das MPI for Physik (MPP) das (Werner-Heisenberg-Institut).

Das MPP - Aufgabe und Geschichte

Die Ziele

 Am MPP betreiben wir Grundlagenforschung in Elementarteilchen- and Astroteilchenphysik, sowohl auf theoretischem als auch auf experimentellem Gebiet.

Die Geschichte

- 1917 Gegründed als Kaiser-Wilhelm Institut für Physik in Berlin. Der Vorsitzende des Direktoriums war Albert Einstein.
- 1946 Wieder-gegründet in Göttingen. Seit 1948 ist das Institut Teil der MPG, und zwar als MPI für Physik (MPP). Der Direktor war Werner Heisenberg.
- 1958 Umzug von Göttingen zum heutigen Standort (Architekt Sep Ruf) in München.
- 1960 Ausgliederung des Instituts für Plasmaphysik (IPP) in Garching.
- 1991 Ausgliederung der Institute für Extraterrestrische Physik (MPE) and für Astrophysik (MPA) in Garching.

Einige frühere Kollegen

 Peter Debeye, Albert Einstein (NP 1922), Werner Heisenberg (NP 1933), Léon van Hove, Max von Laue (NP 1914), Gerhart Lüders, Carl Friedrich von Weizsäcker, Julius Wess, ...

Das MPP - Personal und Forschungsgebiete

Die heutigen Kollegen

- Das MPP hat etwa 160 festangestellte Mitarbeiter, von denen sind etwa 60 Wissenschaftler, 80 Personen arbeiten in den technischen Abteilungen, und 20 Personen in der Verwaltung.
- Zusätzlich haben wir im Mittel etwa 20 Gastwissenschaftler.
- Zur Zeit haben wir 60 Doktoranden und Diplomanden sowie
 20 Auszubildende (Mechaniker, Elektroniker, Mechatroniker, ...).

Die Haupt-Forschungsgebiete

- Die Forschungsarbeiten umfassen theoretische Arbeiten auf verschiedenen Gebieten des Standardmodells und darüber hinaus, sowie Forschung in der Astroteilchenphysik, z.B. WIMPS (dunkle Materie) und Neutrinos, aber auch Stringtheorie.
- Das MPP has Beteiligungen an verschiedenen Experimenten der Hochenergiephysik an Beschleunigern, aber auch in einer Reihe von Nicht-Beschleuniger Experimenten.
- Zusätzlich betreiben MPE und MPP ein Halbleiterlabor (HLL) in München-Neuperlach zur Entwicklung neuer, strahlenharter Spurdetektoren zum Nachweis geladener Teilchen.

Das MPP hat ein breites Forschungspspektrum in theoretischer und experimenteller Physik.

Das MPP - Gruppen und Forschungsgebiete

Direktoren

- Emmy Noether Gruppen.
- MPG Program f
 ür hochqualifizierte Wissenschaftlerinnen.
- MPG unabhängige Forschungsgruppe.
- Junior Forschungsgruppe im Münchner Exzellenzcluster.

Dass ich erkenne, was die Welt, im Innersten zusammenhält

Die zwei Hauptfragen der Elementarteilchenphysik

- Welches sind die kleinsten Bausteine der Natur, und was sind ihre Eigenschaften?
- Was sind die fundamentalen Wechselwirkungen dieser Bausteine?

Der Weg der Beschleunigerphysik

 Zur Lösung braucht man einen Weg kleinste Strukturen und ihre Wechselwirkungen zu sehen, d.h. in irgendeiner Form zu messen.

— Wir machen zwar ein

aber das Prinzip bleibt gleich:

Strahlenguelle

Detektor Detektor

Detektor

Objekt

Strahlenquelle

Was immer man tut, sehen ist und bleibt ein Streuprozess.

Die Heisenberg'sche Unbestimmtheitsrelation

- Die Quantenmechanik macht nur Wahrscheinlichkeitsaussagen, d.h. Aussagen über das mittlere Ergebnis vieler Ereignisse. Das Einzelereignis jedoch ist völlig unbestimmt!
- Mit der Heisenbergschen Unbestimmtheitsrelation kann man das Auflösungs vermögen abschätzen. Faustformel: $\Delta x \Delta p = 0.2$ fm GeV. Ein Teilchen mit Impuls 1 GeV kann also eine Struktur der Größe 0.2 fm auflösen. (1 fm = 10⁻¹⁵ m)

Um diese kleinen Strukturen sehen zu können, brauchen wir Teilchenbeschleuniger.

Das Standardmodell hat viele Präzisionstests sehr erfolgreich bestanden.

Die elementaren Materiebausteine

Unser heutiges Bild der Rezeptur

der Natur, ist:

- Es gibt drei Familien von Leptonen und Quarks.
- Sie sind Fermionen (Spin = 1/2), und nur die erste Familie bildet stabile Materie, p = uud und n = udd.
- Zu jedem Teilchen gibt es ein Antiteilchen mit umgekehrten Ladungen aber sonst identischen Eigenschaften.
- Die Massen sind sehr verschieden und niemand weiß warum. Die Massen reichen von weniger als 1 eV für das ν_e bis zu 173 GeV (fast die Masse eines Gold-Atoms) für das top Quark.
- Eine Theorie zur Erklärung der Massen ist der Higgs-Mechanismus. In dieser Theorie wird ein zusätzliches Teilchen, das noch zu findende Higgs-Boson, vorhersagt.

Wir wollen das Massenspektrum erklären können.

Das Standardmodell - seine Stärken

Eine Erfolgsgeschichte (Stand 2012)

- Daten und Theorie stimmen perfekt überein.
- Messungen auf sub Promille Genauigkeit, z.B. $m_Z = (91.1875 \pm 0.0021) \text{ GeV}.$

Dies entspricht 0.02 Promille Genauigkeit!!

Konsistenz direkter und indirekter Messungen

- $m_{
 m W} = (80.385 \pm 0.015)~{
 m GeV}$
 - $m_{
 m W} = (80.363 \pm 0.020)~{
 m GeV}$
 - $m_{
 m top} = (173.2 \pm 0.9) \, {
 m GeV}$

$$m_{\rm top} = (172.6^{+13.5}_{-10.4}) \, {\rm GeV}$$

Wir haben die Massen zwar genau gemessen, verstehen ihre Ursache aber nicht.

Probleme mit der Masse?

- Wieso habe ich eine so große Masse? Wildschweine?
- Klar, Wildschweine haben innere Struktur, sie bestehen z.B. aus Fleisch. Fleisch hat eine Masse, also haben Wildschweine eine Masse. Aber wieso hat Fleisch eine Masse?
- Klar, Fleisch besteht aus Eiweißen.
 Eiweiße haben eine Masse, also Aber wieso ...?
- Klar, Eiweiße bestehen aus Molekülen. Moleküle haben eine Masse, also …. Aber wieso …?
- Klar, Moleküle bestehen aus Atomen. Atome haben eine Masse, also …. Aber wieso …?
- Klar, Atome bestehen aus Protonen und Neutronen.
 P und n haben eine Masse, also Aber wieso ...?
- Klar, Protonen und Neutronen bestehen aus Quarks.
 Aber wieso haben Quarks eine Masse?

Wir brauchen eine andere Erklärung als den Aufbau aus kleineren massiven Bausteinen.

Das Higgs-Boson - die Idee

Die Vermutung (1965)

- Fundamentale Teilchen, sowohl Materie- als auch Kraft-Teilchen, sind an sich masselos.
- Massen werden erst durch Wechselwirkungen mit einem Hintergrundfeld, dem Higgsfeld, erzeugt.
- Je stärker die Kopplung, um so größer die Masse.
- Die Eichbosonen erhalten ihre Massen durch spontane Symmetriebrechung und den Higgs-Mechanismus.

Der Vater des Gedankens

Peter Higgs

Die Konsequenz

- Die Existenz des Higgs-Bosons als Anregung des Higgsfeldes.

Die Vorhersagen des Standardmodells

 Die Kopplungen des Higgs-Bosons an alle Teilchen sind vorhergesagt, und damit liegen die Zerfalls-Kanäle und -Raten des Higgs-Bosons bei gegebener Masse fest.

Die Masse des Higgs-Bosons ist nicht vorhergesagt und muß gemessen werden.

Higgs-Boson Zus

Die supraleitenden Magnete

Zusammenfasung

Der Large Hadron Collider, 2009⁺⁺, $E_p = 4$ TeV

Anzahl	1232
Länge	14.3 m
Gewicht	35 t
B-Feld	8.4 T
Temperatur	1.9 K
Strom	11700 A
Energie	7.1 MJ

IHCh

Ein Vergleichsobjekt

v=18(620) km/h

Entdeckungspotential: $M_{\rm H} = 100 - 1000 \, {\rm GeV}$

Teilchenphysik am MPP am Beispiel von ATLAS München 26.06.12 Richard Nisius

590 t

Das Bauprinzip von Teilchen-Detektoren und ein Beispiel

Das Prinzip

 Mit einer Art Zwiebelschalenanordnung um die Strahlröhre werden die verschiedenen Teilchen an Hand ihrer typischen Wechselwirkungen nachgewiesen.

Die Messgrößen

- Ort
- Impuls bzw. Geschwindigkeit
- Energie

Ein Beispiel LHC und der ATLAS Detektor

- Bei komplizierten Zerfällen wird aus der Summe aller Zerfallsprodukte auf die Eigenschaften der primär erzeugten Teilchen geschlossen.

elektromagn

Kalorimeter

Sour-

Kammer

innerste Schicht

Photonen

Myonen

π[±], p

et

Hadronen-

Kalorimeter

Kammer

...ausserste Schicht

Erst die Rekonstruktion aller Reaktionsprodukte gibt Aufschluß über die Reaktion.

Der ATLAS Detektor

Ein Siliziumstreifendetektor

Ein ATLAS SCT Sensor

Mit Halbleiterdetektoren werden Spuren und Zerfallspunkte gemessen.

Bilder von der Modulproduktion am MPP

Der Roboter zur Ausrichtung

Parallelproduktion der Module

Ausrichtung der Wafer

Die Bondmaschine

Von Modulen zu Scheiben

Die Vorderseite einer Scheibe

Die Rückseite einer Scheibe

Die Chronologie der Ereignisse

- 20.11.09 Start des LHC.
- 23.11.09 Kollisionen 2 x 0.45 TeV.
- 08.12.09 Kollisionen 2 x 1.18 TeV.
- 28.03.10 Start Datennahme 2 x 3.5 TeV.
- Jahres-Luminosität, 2010: 0.045/fb, 2011: 5.3/fb.
- 30.03.12 Start Datennahme 2 x 4 TeV.
- Luminosität = Anzahl Ereignisse für Reaktion mit 1 fb = 10^{-43} m² Wirkungsquerschnitt.

Ein simples Luminositätsmodell

Die LHC Lernkurve ist etwa exponentiell, und es fehlt nur noch ein Faktor 2.

Die Top Quark Paarproduktion

Quark induzierte Prozesse (ca 10%) $f_{q/p}$ 000 $\hat{\sigma}^{\mathrm{q}\bar{\mathrm{q}} \rightarrow t\bar{\mathrm{t}}}$ $f_{\bar{q}/p}$

Gluon induzierte Prozesse (ca 90%)

- Der Wirkungsquerschnitt ist: $\sigma(t\bar{t}) = 170$ pb für $m_{top} = 172.5$ GeV und $\sqrt{s} = 7$ TeV.
- $\Rightarrow \text{ Im Jahr 2011 haben wir ca. 900.000 Top Quark Paare aufgezeichnet.}$ $Die Lebensdauer: <math>\tau = \frac{\hbar}{\Gamma} = \frac{6.58 \cdot 10^{-16}}{1.55 \cdot 10^9} s = 4.2 \cdot 10^{-25} s$ ist wesentlich kleiner als die Zeit zur Hadronformation $t \approx \frac{\hbar}{\Lambda} \approx 6 \cdot 10^{-24}$. Das Top-Quark zerfällt als einziges Quark frei.

Der Wirkungsquerschnitt am LHC ist mehr als 20 mal so groß wie am Tevatron.

Der Zerfall des Top Quark Paars

- Top Quarks zerfallen fast immer via

 $t \rightarrow W b$. Die Ereignisse werden deshalb nach W-Zerfällen klassifiziert.

- Dilepton: geringe Rate (4%), hohe Reinheit, kinematisch unterbestimmt.
- Lepton+jets: mittlere Rate (30%),
 Lepton 'Tag', bester Kompromiss.
- Jets: höchste Rate (46%), aber auch größter Untergrund.

Der Lepton + Jets Kanal liefert zur Zeit die kleinsten Fehler für die Top Quark Masse

Einleituna

SM in der Nußschale

ATLAS

Spurdetektoren

Datennahme

Top-Quarks

Hiaas-Boson

Zusammenfasung

Teilchenphysik am MPP am Beispiel von ATLAS München 26.06.12 Richard Nisius イロトイ 🗇 トイミトイミト 🧵 🗠 🔍 🔿 🗠 22

Die Messung im Lepton+jets Kanal

Nächstes Ziel ist die Verbesserung der sytematischen Unsicherheit auf etwa 1 GeV.

Hinweise auf das Higgs-Boson

Direkte Messungen

1)
$$p\bar{p} \rightarrow t\bar{t}$$

2) $p\bar{p} \rightarrow W + X$ und $e^+e^- \rightarrow W^+W^-$

Indirekte Bestimmungen

1) Die Z-Produktion

2) Der Muonzerfall

Diese gute Übereinstimmung ist einer der Gründe an ein leichtes Higgs-Boson zu glauben.

Teilchenphysik am MPP am Beispiel von ATLAS München 26.06.12 Richard Nisius 24

Das Higgs - Entdeckungspotential am LHC

– Das ATLAS Entdeckungspotential ist besser als 10 σ für ein Jahr mit Design-Luminosität.

Das Standard Model Higgs-Boson kann uns am LHC wohl nicht verborgen bleiben.

Die Hinweise aus den 2011 Daten

3σ

4σ

Diese Hinweise reichen noch nicht. Die 2012 Daten werden gerade ausgewertet.

Anstelle einer Zusammenfassung

Eine unvollständige Liste interessanter Links

Dieser Vortrag

http://www.mpp.mpg.de/~nisius/welcomeaux/lehre.html

Die Startseite der Deutschen Teilchenphysik http://www.teilchenphysik.de

Ein Lernprogramm der Universität Erlangen http://www.solstice.de/teilchenphysik/

Fun with ..., eine Sammlung von Cartoons von Prof. C. Grupen

http://www.hep.physik.uni-siegen.de/~grupen

Physik mit Musik, der LHC Rap von Katie MCAlpine (alpinecat) http://www.youtube.com/watch?v=j50ZssEojtM

Danke für die Aufmerksamkeit ... und ... viel Spass beim Weiterlesen.