The MADMAX experiment: searching for axion dark matter

The axion is one of the few hypothetical particles that can solve two major problems in physics: “What is the nature of dark matter?” and “why the strong interaction is invariant under time reversal?” (the strong CP problem). Scientists working on the recently initiated MADMAX (Magnetized Disc and Mirror Axion Experiment) project are looking for this fascinating new particle.

Axions would be unlike any of the known particles: cosmological models suggest that the axion’s mass would be between one microelectronvolt and one millielectronvolt, much lighter than even neutrinos, the lightest of known massive particles.

MADMAX would take advantage of the quantum mechanical mixing of particles — the ability of certain particles to take on the properties of other particles. In a static magnetic field, an axion behaves a little bit like a photon, developing a small electric field. The stronger the magnetic field, the more “photon-like” the axion becomes. If we could detect this electric field, we could verify the existence of dark matter axions.

Dielectric media in a strong magnetic field

Pivotal to detecting this electric field is the effect a change in dielectric media has on the axion. Dielectrics are simply non-conducting substances, like air, sapphire or plastic, though this also occurs in a mirror. The axion’s tiny electric field is broken at the boundary between the two media, resulting in electromagnetic radiation (microwaves) being emitted.

These electromagnetic waves are emitted at right angles from surface of the interface, allowing one to measure them by focusing the radiation into a detector. As the frequency of the radiation is given by the mass of the axion, cosmological considerations suggest that it could lie between 0.25 and 250 gigahertz. Unfortunately, even a sharp change in interface (as given by a one square meter mirror) inside a very powerful 10 Tesla magnetic field is not enough to see axions. The signal would only be a paltry 10-27 watts, beyond detectibility even with the most sensitive detectors. 

Boosting the signal: dielectric haloscopes

To search for axions, we must have some way of boosting the signal. Fortunately, this conversion of axions to microwave radiation would happen at any change of media.

By having many dielectric disks, one can combine the electromagnetic waves generated at multiple interfaces. In addition, reflections between the disks can cause resonance effects, further amplifying the signal. By carefully positioning the disks, one can use these effects coherently to amplify the conversion of axions to photons in a specific frequency range, and thus search a range of axion masses. Such a device is called a “dielectric haloscope”.

This is the plan of the MADMAX experiment: to boost the signal by using 80 dielectric disks in addition to the mirror, each with an area of one square meter and a high refractive index. The disks have to be positioned with micrometer precision. This setup will be contained in a 10 Tesla magnetic field — by comparison a simple fridge magnet is only about 0.05 Tesla. Scientists plan to use radiometers to detect the microwaves.

By using this many disks, one could achieve a signal that is tens or hundreds of thousands times stronger than a single mirror. This would give a signal in the order of 10-23 watt, which can be detected with current detector technology. 

Promising approaches

The underlying principle has already been tested in initial experimental setups. While lacking a magnet, these setups had up to five sapphire disks (20 centimeters in diameter).  With this kind of setup, it was possible to create an interference effect with the necessary precision and size. A dummy signal in the order of 10-23 watt was detected in a week-long measurement.

These results have been so promising that an interest group has formed to realise a dielectric haloscope in a full scale experiment. Groups from the following research institutions are currently participating in the project:
Centre de Physique des Particules de Marseille (CPPM), France

  • DESY Hamburg, Germany
  • MPI for Physics, Munich, Germany
  • MPI for Radio Astronomy, Bonn, Germany
  • Néel Institute, Grenoble, France
  • RWTH Aachen, Germany
  • University of Hamburg, Germany
  • University of Tübingen, Germany
  • University of Zaragoza, Spain

The MPI is taking on the development of the radiometer in the 10 to 50 gigahertz frequency range, as well as the construction and characterisation of the disk system.

Further information on the "MADMAX" group

News releases


Whether axions exist is still up for debate. If they do exist, two open questions in particle physics could be resolved: The puzzle of what dark matter is made of – and the question of why the strong interaction, one of the four known forces in the universe, has a particular characteristic. The…

Read more

The nature of dark matter is probably one of the most pressing questions in modern physics. Although the existence of dark matter, due to many astrophysical and cosmological observations of its gravitational influence, is difficult to refute, an experimental detection in the laboratory is still…

Read more

The universe needs new particles: Many phenomena cannot be satisfactorily explained on the basis of the elementary particles known today. One such new particle is the axion. The CAST experiment at CERN has been searching for axions from the Sun since 2003. Now it is being retired. Although CAST has…

Read more

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 has marked the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in…

Read more

Group members

E-mail address:
Phone number: +49 89 32354-extension
name function e-mail extension office
Caldwell, Allen, Prof. Dr. Director caldwell 529 212
Diehl, Johannes PhD Student diehl 464 248
Dvali, Georgi, Prof. Dr. Director gdvali 306 311
Gooch, Christopher Engineering gooch 242 115
Hambarzumjan, Armen Engineering armen 285/235 332
Ivanov, Anton, Dr. Postdoc ivanovan 293 074
Kreikemeyer, Dagmar, Dr. Postdoc dkreike 337 116
Lee, Chang, Ph.D. Postdoc changlee 232 075
Majorovits, Béla, PD Dr. Senior Scientist bela 262 118
Maldonado, Juan PhD Student maldonad 293 074
Monninger, Georg Student monninge 293 074
Raffelt, Georg, Dr. Senior Scientist raffelt 234 344
Reimann, Olaf, Dr. Engineering reimann 313 330
Shtembari, Lolian PhD Student lolian 232 075
Steffen, Frank Daniel, Dr. Senior Scientist steffen 335 245
Strom, Derek, Dr. Engineering dstrom 422 332
Wacker, Ina Secretary ina 207 213

Externe Mitglieder

Javier Redondo, Universität Saragossa (Universidad de Zaragoza)

Key publications

A new experimenal approach to probe QCD axion dark matter in the mass range above 40 μeV
The MADMAX Collaboration
accepted for publication by The European Physical Journal C (EPJ C)

Dielectric Haloscopes: A New Way to Detect Axion Dark Matter
The MADMAX Working Group: Allen Caldwell, Gia Dvali, Bela Majorovits, Alexander Millar, Georg Raffelt, Javier Redondo, Olaf Reimann, Frank Simon, Frank Steffen
Phys. Rev. Lett. 118, 091801 (2017)

Dielectric Haloscopes to Search for Axion Dark Matter: Theoretical Foundations
Alexander J. Millar, Georg G. Raffelt, Javier Redondo, Frank D. Steffen
JCAP, 061 (2017)

MADMAX: A new Dark Matter Axion Search using a Dielectric Haloscope
Béla Majorovits, Javier Redondo for the MADMAX Working Group (A. Caldwell, G. Dvali, C. Gooch,  Contributed to the 12th Patras Workshop on Axions, WIMPs and WISPs, Jeju Island, South Korea, June 20 to 26, 2016

From Resonant to Broadband Searches for WISPy Cold Dark MatterJoerg Jaeckel, Javier RedondoPhys. Rev. D 88, 115002 (2013)  arXiv:1308.1103