applicationContext = Production

String theory


String theory is a promising solution for a profound problem: How does everyday gravitation behave on the short distance scales where the phenomena of quantum physics become noticeable?

In the basic approach of string theory, the fundamental objects of physics are no longer point-like particles but rather one-dimensional objects, so-called strings.

It appears that the strings move through a ten-dimensional space-time and must be supersymmetrical there. This assumption has many consequences: for example, that besides the strings there are also higher-dimensional objects, so-called D-branes.

A central question is how our familiar four-dimensional space-time, with the physics known to us, can be derived from this higher-dimensional theory.

In this context, the string theory group at the MPP is engaged with a number of different "compactification" scenarios, such as F-theory, for example. At the same time, the theorists are investigating what implications these have for particle physics and cosmology.

Further, they are studying the quantum properties of black holes and the structure of quantum scattering processes in quantum field theory and quantum gravitation as well as the mathematical properties of compactifications, and non-associative algebras in particular.

In addition, there are surprising relationships in string theory between different physical theories, so-called dualities. One of these dualities, the AdS/CFT correspondence, posits a relationship between gravitational theory and quantum field theory. AdS stands for "anti-de Sitter space," and CFT for conformal field theory. With this, MPP scientists are establishing new connections between string theory and the physics of the strong interaction, which is dominant between quarks and gluons.

Further information on the String theory group

News releases

05/10/2017

Vladislav Kupriyanov has recently joined the Max Planck Institute for Physics as a postdoctoral research fellow. The scientist dedicates himself primarily to aspects of the quantization of string theory and M-theory and will collaborate with the group headed by Dieter Lüst, Director at the Max...

Read more
04/20/2016

Where do the most important topics and trends in theoretical physics lie? This is the question to be pursued by internationally renowned experts at the symposium “New Developments in Theoretical Particle Physics.” The event takes place from May 18 to 20, 2016, at the Max Planck Institute for...

Read more

Group members

name function extension www

Achmed-Zade, Ismail

PhD Student 427

Averin, Artem

PhD Student 334

Bart, Henk

PhD Student 464

Betzler, Philip

PhD Student

Blumenhagen, Ralph, PD Dr.

Scientist 276

wwwth.mpp.mpg.de/members/blumenha/

Brinkmann, Max

Student 464

Garcia Etxebarria, Inaki, Dr.

Scientist 420

Klaewer, Daniel

PhD Student 251

Kupriyanov, Vladislav

Scientist 334

Lueben, Marvin

PhD Student 405

Lüst, Dieter, Prof. Dr.

Director 282

Osten, David

PhD Student 405

Palti, Eran

Scientist 532

Salgado Rebolledo, Sebastian

PhD Student 405

Schlechter, Lorenz

Student 464

Schmidt-May, Angnis, Dr.

Scientist 413

Schulz, Benjamin

PhD Student 334

Stieberger, Stephan, Dr.

Scientist 310

wwwth.mpp.mpg.de/members/stieberg/index.html

Syvaeri, Marc

PhD Student 2180-4115

Traube, Matthias

Student 464

Wolf, Florian

PhD Student 251

Key publications

X. Bekaert, J. Erdmenger, D. Ponomarev and C. Sleight,
Quartic AdS Interactions in Higher-Spin Gravity from Conformal Field Theory
Journal of High Energy Physics 1511 (2015) 149  
arXiv:1508.0429

R. Blumenhagen, A. Font, M. Fuchs, D. Herschmann, E. Plauschinn, Y. Sekiguchi, F. Wolf
"A Flux-Scaling Scenario for High-Scale Moduli Stabilization in String
Theory", Nucl.Phys. B897 (2015) 500-554
arXiv:1503.07634

G. Dvali, C. Gomez, R. Isermann, D. Lüst, S. Stieberger
Black Hole Formation and Classicalization in ultra-Planckian 2 -> N Scattering
Nucl.Phys. 893 (2015) 187
arXiv:1409.7405

A. Font, I. Garcia Etxebarria, D. Lüst, S. Massai, C. Mayrhofer
Heterotic T-fects, 6D SCFTs and F-Theory
arXiv:1603.09361